一种镧系-过渡金属二维氰桥配合物[Nd(DMSO)₂(H₂O)₂][Ni(CN)₄]CI (DMSO=二甲亚砜)的合成和晶体结构

梁淑惠 车云霞 郑吉民* (南开大学化学学院,天津 300071)

关键词: 氰桥配合物; 镧系-过渡金属配合物; 二甲亚砜

中国分类号: 0614.33*5; 0614.81*3 文献标识码: A 文章编号: 1001-4861(2005)07-1055-05

Synthesis and Crystal Structure of a Cyano-Bridged Lanthanide-Transition-Metal $Complex \ [Nd(DMSO)_2(H_2O)_2][Ni(CN)_4]Cl \ (DMSO=Dimethylsulfoxide) \ with \\ Two-dimensional \ Gridding \ Molecule \ Structure$

LIANG Shu-Hui CHE Yun-Xia ZHENG Ji-Min*
(Department of Chemistry, Nankai University, Tianjin 300071)

Abstract: The cyano-bridged bimetallic complex $[Nd(DMSO)_2(H_2O)_2][Ni(CN)_4]Cl$ with two-dimensional gridding molecule structure was synthesized and characterized. In the complex all four cyano groups of unit $Ni(CN)_4^{2-}$ are bound to Nd^{3+} ions. The crystal data for the title complex: monoclinic, space group $P2_1/c$, a=0.780 0(3) nm, b=1.509 7(6) nm, c=1.683 2(6) nm, β =115.231(14)°, Z=4, μ =4.311 mm⁻¹, final R_1 =0.020 9, wR_2 =0.045 4. CCDC: 272214.

Key words: cyano-bridged complex; lanthanide-transition metal complex; DMSO

0 Introduction

There has been continued interest in cyanide-bridged lanthanide-transition-metal complexes because of their applications as precursors in the preparation of various materials, such as rare earth orthoferrites [1], electroceramic materials [2], chemical sensor materials [3], catalysis materials [4], and molecular magnets materials [5]. To the best of our knowledge, the study about tetracyanometalate complex is less than hexacyanometalate complex. In 1985, a series of rare-earth complexes having the general formula $\text{Ln}_2[\text{Pt}(\text{CN})_4]_3 \cdot x \text{H}_2\text{O}$ (x=18)

or 21) have been reported ^[6]. Incorporation of organic ligands into the 4f-3d complexes can give various molecular structures. Some unusual cyano-bridged one-dimensional 4f-3d arrays derived from tetracyanometalate $M(CN)_4^{2-}$ (M=Ni, Pd, Pt) have been produced, e.g. $\{(DMF)_{10}Ln_2[M(CN)_4]_3\}_{\infty}$ (Ln=Sm, Eu, Er, Yb and M=Ni, Pd, Pt)^[7]. Very recently, the pentanuclear cyano-bridged 4f-3d array $[Ho(H_2O)_3(DMF)_3]_2[Ni(CN)_4]_3$ was reported based on the reaction of $K_2[Ni(CN)_4]_3$ and $Ho(NO_3)_3 \cdot 6.5H_2O$ in $DMF^{[8]}$. But the 4f-3d complexes that all four cyano groups are bound as monodentate ligands have been poorly reported. Here

收稿日期:2004-07-12。收修改稿日期:2005-04-21。

国家自然科学基金资助项目(No.50242001)。

^{*}通讯联系人。E-mail:jmzheng@public.tpt.tj.cn

第一作者:梁淑惠,女,25岁,硕士研究生;研究方向:配位化学。

we will report a novel complex $[\mathrm{Nd}(\mathrm{DMSO})_2(H_2O)_2][\mathrm{Ni}(\mathrm{CN})_4]\mathrm{Cl}$ with two-dimensional gridding structure. In the complex all four cyano groups of unit $\mathrm{Ni}(\mathrm{CN})_4^{2-}$ are bound to Nd^{3+} ions.

1 Experimental

1.1 Materials

Elemental analyses of carbon, hydrogen, and nitrogen were carried out with a Perkin-Elmer 240C elemental analyzer. The infrared spectrum on KBr pellets was performed on a Nicolet Magna-IR 560 spectrophotometer in the $4\,000\,{\sim}400~{\rm cm}^{-1}$ regions. TGA measurement of the compound was performed in the temperature range $20{\sim}800~{^\circ}{\rm C}$ under nitrogen on a universal V2.6D TA instrument.

1.2 Synthesis of the [Nd(DMSO)₂(H₂O)₂][Ni(CN)₄] Cl

 $\mathrm{NdCl_3\cdot 6H_2O}$ (0.79 g, 2.2 mmol), DMSO (0.32 mL, 4.4 mmol) and $\mathrm{K_2[Ni(CN)_4]}$ (0.53 g, 2.2 mmol) reacted in the molar ratio of 1:2:1 in deionized water. Slow evaporation of the resultant pink mixture in the dark at room temperature gave well-shaped pink single crystal. Anal. Calcd(%) for $\mathrm{C_8H_{16}ClN_4NdNiO_4S_2}$ (534.77): C,17.97; N,10.48; H,3.02. Found(%): C, 17.82; N, 10.34; H, 3.25.

1.3 X-ray structure determination

The data collections of the title complex were performed on a Bruker SMART 1000 CCD diffractometer operating at 50 kV and 20 mA using Mo Ka radiation (λ =0.071 073 nm) at 293 K. A total of 10 026 independent reflections were measured to give 3 609 independent reflections (R_{int} =0.022 7). Semiempirical absorption correction was applied using the SADABS The structure was solved by the direct method (SHELXS-97) and refined by full-matrix leastsquares (SHELXL-97) on F^2 . Anisotropic thermal parameters were used for the non-hydrogen atoms and isotropic thermal parameters for the hydrogen atoms. Hydrogen atoms were added geometrically and refined using a riding model. Weighted R-factors, wR, and all goodness of fit (S) values are based on F^2 . The weighting scheme is $w=1/[\sigma^2(F_0^2)+(0.006 8P)^2+2.88P]$ where $P=(F_0^2+2F_c^2)/3$. The crystal data and the experimental details for structural analyses are summarized in Table 1.

CCDC: 272214.

Table 1 Crystallographic data for the title complex

Table 1 Crystanographic data for the due complex					
Empirical	$C_8H_{16}ClN_4NdNiO_4S_2$				
Formula	534.77				
Temperature / K	293(2)				
Wavelength / nm	0.071 073				
Crystal system	Monoclinic				
Space group	$P2_1/c$				
a / nm	0.780 0(3)				
b / nm	1.509 7(6)				
c / nm	1.683 2(6)				
β / (°)	115.231(14)				
Volume / nm ³	1.793 0(12)				
Z	4				
Density / (Mg·m ⁻³)	1.981				
F(000)	1 044				
Crystal size / mm	$0.20 \times 0.18 \times 0.12$				
Reflections collected	10 026				
Independent reflections	3 609				
Number of parameters	194				
Goodness of fit on $F^2(s)$	1.194				
Final R indices $[I>2\sigma(I)]$	R_1 =0.020 9, wR_2 =0.045 4				
R indices (all data)	R_1 =0.023 6, wR_2 =0.046 2				

2 Results and discussion

2.1 IR characterizations

The IR spectrum of the title complex shows three strong bands at 2 139.8 cm⁻¹, 2 153.0 cm⁻¹, 2 166.3 cm⁻¹ assigned to $\nu_{\text{C}=\text{N}}$; The sharp bonds at 963.6 cm⁻¹, 1 007.4 cm⁻¹, 1 019.2 cm⁻¹ are attributed to $\nu_{\text{S=0}}$.

2.2 Thermal study

Thermal gravimetric analysis (TGA) reveals that the complex can absorb water molecule as a consequence of the gridding structure [9,10]. The TGA shows a weight loss of 3.8% in the temperature range 22~200 °C, corresponding to one water molecules (calcd 3.3%), probably one coordinated water molecule. Then the weight of loss 15.4% in the range of 200 to 350 °C corresponds to the loss of the other coordinated water molecule and 0.75DMSO molecule (calcd 15.4%). This partially dehydrated material go on decomposing up to 800 °C.

2.3 Crystal structure

The selected bond distances and angles for $[Nd(DMSO)_2(H_2O)_2][Ni(CN)_4]Cl$ are shown in Table 2. Table 3 gives the distances and angles related with the hydrogen bonding. Fig.1 is a perspective view of

Table 2 Selected bond lengths (nm) and angles (°) for title compound							
Nd(1)-O(1)	0.238 8(2)	Ni(1)-C(4)#1	0.185 8(3)	N(1)-C(1)	0.114 4(4)		
Nd(1)-O(2)	0.2428(2)	Ni(1)-C(1)	0.186 3(3)	N(2)-C(2)	0.114 2(4)		
Nd(1)-O(4)	0.246 7(2)	Ni(1)-C(3)#2	0.187 3(3)	C(2)-Ni(1)#4	0.187 5(3)		
Nd(1)-O(3)	0.252 2(2)	Ni(1)-C(2)#3	0.187 5(3)	N(3)-C(3)	0.114 6(4)		
Nd(1)-N(4)	0.252 7(3)	S(1)-O(1)	0.151 8(2)	C(3)-Ni(1)#5	0.187 3(3)		
Nd(1)- $N(1)$	0.253 2(3)	S(1)-C(5)	0.176 6(4)	N(4)-C(4)	0.114 5(4)		
Nd(1)- $N(2)$	0.256 0(3)	S(2)-C(7)	0.177 2(5)	C(4)-Ni(1)#6	0.185 8(3)		
Nd(1)- $N(3)$	0.258 3(3)	O(3)-H(3A)	0.085 01	C(5)-H(5A)	0.096 00		
0(4) 33.1(4) 0(9)	122 11(0)	0(0) 311(4) 31(0)	420.05(0)	G(4) 3V(4) G(9) #9	00.06(4.0)		
O(1)-Nd(1)-O(2)	132.11(8)	O(2)-Nd(1)-N(2)	138.05(9)	C(1)-Ni(1)-C(2)#3	89.36(14)		
O(1)-Nd(1)-O(4)	143.82(8)	O(4)-Nd(1)-N(2)	107.10(9)	C(3)#2-Ni(1)-C(2)#3	92.85(14)		
$\mathrm{O}(2) ext{-}\mathrm{Nd}(1) ext{-}\mathrm{O}(4)$	70.10(9)	O(3)-Nd(1)-N(2)	67.99(9)	N(1)- $C(1)$ - $Ni(1)$	179.1(3)		
$\mathrm{O}(1) ext{-}\mathrm{Nd}(1) ext{-}\mathrm{O}(3)$	135.67(8)	N(4)-Nd(1)-N(2)	88.96(10)	N(2)- $C(2)$ - $Ni(1)$ #4	174.8(3)		
O(2)- $Nd(1)$ - $O(3)$	71.47(8)	N(1)- $Nd(1)$ - $N(2)$	148.90(9)	N(3)-C(3)-Ni(1)#5	173.8(3)		
O(4)-Nd(1)-O(3)	73.24(8)	O(1)-Nd(1)-N(3)	76.98(9)	N(4)-C(4)-Ni(1)#6	178.4(3)		
O(1)-Nd(1)-N(4)	74.41(9)	O(2)-Nd(1)-N(3)	129.18(9)	O(1)- $S(1)$ - $C(5)$	105.71(18)		
O(2)-Nd(1)-N(4)	74.00(9)	O(4)-Nd(1)-N(3)	67.96(9)	C(5)-S(1)-C(6)	99.5(2)		
O(4)-Nd(1)-N(4)	140.57(9)	O(3)-Nd(1)-N(3)	120.18(9)	S(1)- $O(1)$ - $Nd(1)$	136.14(14)		
O(3)-Nd(1)-N(4)	80.45(9)	N(4)-Nd(1)-N(3)	151.31(9)	$\mathrm{C}(1)\text{-}\mathrm{N}(1)\text{-}\mathrm{Nd}(1)$	170.8(3)		
O(1)-Nd(1)-N(1)	75.11(9)	N(1)-Nd(1)-N(3)	81.56(10)	$\mathrm{C}(2)\text{-}\mathrm{N}(2)\text{-}\mathrm{N}\mathrm{d}(1)$	159.6(3)		
O(2)-Nd(1)-N(1)	71.60(9)	N(2)-Nd(1)-N(3)	82.00(10)	C(3)- $N(3)$ - $Nd(1)$	158.8(3)		
O(4)-Nd(1)-N(1)	90.81(9)	C(4)#1-Ni(1)-C(1)	88.01(14)	$\mathrm{C}(4)\text{-}\mathrm{N}(4)\text{-}\mathrm{Nd}(1)$	178.4(3)		
O(3)-Nd(1)-N(1)	142.88(9)	C(4)#1-Ni(1)-C(3)#2	89.75(14)	S(1)-C(5)-H(5A)	109.5		
N(4)-Nd(1)-N(1)	92.97(10)	C(1)-Ni(1)-C(3)#2	177.69(13)	H(5A)-C(5)-H(5B)	109.5		
O(1)-Nd(1)-N(2)	75.56(9)	C(4)#1-Ni(1)-C(2)#3	176.72(14)				

Symmetry transformations used to generate equivalent atoms: #1: x-1, y, z; #2: -x-1, y-1/2, -z-1/2; #3: -x, y-1/2, -z-1/2; #4: -x, y+1/2, -z-1/2; #5: -x-1, y+1/2, -z-1/2; #6: x+1, y, z.

Table 3 Distances (nm) and angles (°) involving hydrogen bonding

D-H	A	d(D-H)	$d(\mathbf{H}\cdots\mathbf{A})$	∠ DHA	$d(\mathbf{D}\cdots\mathbf{A})$
ОЗ-НЗА	Cl1 ⁱ	0.085 0	0.258 9	121.84	0.312 3
О3-Н3В	Cl1 ⁱⁱ	0.085 0	0.244 6	154.76	0.323 5
O4-H4B	Cl1 ⁱⁱⁱ	0.085 0	0.253 4	133.22	0.317 7
O4-H4A	$Cl1^{iv}$	0.085 0	0.238 5	156.14	0.318 1

Symmetry transformations: ${}^{i}x$, $-\gamma-1/2$, z+1/2; ${}^{ii}-x+1$, $\gamma+1/2$, -z-1/2; ${}^{iii}-x$, $\gamma+1/2$, -z-1/2; ${}^{iv}x$, $-\gamma-1/2$, z+1/2.

 $[Nd (DMSO)_2 (H_2O)_2][Ni (CN)_4]Cl$ molecule with atomic labeling scheme. The crystal structure of the title complex along c-axis direction is depicted in Fig.2. Fig.3 gives the packing diagram of the complex.

X-ray single-crystal structure analysis revealed that the 2D polymer layer $[Nd(DMSO)_2(H_2O)_2][Ni(CN)_4]$ Cl consists of square-planar Ni^{2+} and eight-coordinate Nd^{3+} ions alternately linked by the bridging cyano groups. The asymmetric unit of the complex consists of one independent $[Ni(CN)_4]^{2-}$ unit, one independent of Nd^{3+} unit, two DMSO, two water molecules and one

Cl⁻ ion. All four cyano groups of Ni(CN)₄²⁻ unit are involved in the coordination to adjacent Nd³⁺ ions. The Ni atom exhibits a square-planar environment with four cyano carbon atoms, the Ni-C bonds are in the range of 0.185 8(3) and 0.187 5(3) nm, and the angles between two proximate C atoms and Ni(1) atom are listed: C(4)#1-Ni(1)-C(1)=88.01 (14)°, C(4)#1-Ni(1)-C (3)#2=89.75(14)°, C(1)-Ni(1)-C(2)#3=89.36(14)°, C(3)#2-Ni(1)-C (2)#3=92.85 (14)° (where #1denotes the transformation x-1, y, z and #2 denotes -x-1, y-1/2, -z-1/2 and #3 denotes -x, y-1/2, -z-1/2. In con-

Fig.1 Perspective view of [Nd(DMSO)₂(H₂O)₂][Ni(CN)₄]Cl with the atomic numbering scheme

Fig.2 Crystal structure of [Nd(DMSO)₂(H₂O)₂][Ni(CN)₄]Cl along c-axis

Fig.3 Packing diagram of the title complex

trast, the Nd³+ ion is connected to four cyano nitrogens and four oxygen atoms of two DMSO and two water molecules. The bridging cyanides coordinate to the Nd³+ ions in four different fashions: two nearly linear C(1)-N(1)-Nd(1)=170.8(3)°, C(4)-N(4)-Nd(1)=178.4(3)° and two bend C(2)-N(2)-Nd(1)=159.6(3)°, C(3)-N(3)-Nd(1)=158.8(3)°. The Nd-O bond distances range from 0.238 8(2) to 0.252 2(2) nm, and the Nd-N bond lengths range from 0.252 7(3) to 0.258 3(3)nm. The adjacent Ni···Nd distances are 0.553 9 nm for Ni(1)···Nd(1), 0.557 7 nm for Ni(1)#4···Nd(1), 0.560 2 nm for Ni(1)#5···Nd(1) and 0.553 nm for Ni(1)#6···Nd(1).

The crystal structure of the title complex along *c*-axis reveals that the structure consists of neutral layers with relatively regulate Ni₂Nd₂ rectangles. The Ni²⁺ and Nd³⁺ ions are situated at the four corners. All the Ni²⁺ ions are coplanar, but all the Nd³⁺ ions deviated from the plane. Between the closer layers, the Cl⁻ ions interact with the coordinated water molecules through hydrogen bonds to connect the two layers (Fig.3).

In conclusion, the structure of the complex Nd (DMSO)₂ (H₂O)₂][Ni (CN)₄]Cl is novel. First, all four cyano groups of unit Ni(CN)₄²⁻ are bound to Nd³⁺ ions, which is difficult to have coplanar structure of Ni(CN)₄²⁻. Second, the molecule DMSO is an infrequent ligand. Of course, the complex may have potential appliance prospect in catalysis and molecular magnets.

References:

- [1] (a)Traversa E, Nunziante P, Sakamoto M, et al. Chem. Lett., 1995:189~190
 - (b)Gallagher P K. Mater. Res. Bull., 1968,3:225~232
- [2] Sadaoka Y, Traversa E, Sakamoto M. J. Mater. Chem., 1996, 6:1355~1360
- [3] Traversa E, Matsushima S, Okada G, et al. Sens. Actuators, B, 1995,25:661~664
- [4] (a)Amer A K, Alper H. J. Am. Chem. Soc., 1989,111:927~ 930
 - (b)Matsubara S, Kodama T, Utimoto K. *Tetrahedron Lett.*, **1990**, **31**:6379~6380
- [5] (a)Kahn O. Nature, 1995,378:667~668
 (b)Hatlevik O, Buschmann W E, Zhan J. Adv. Mater., 1999, 11:914~918
- [6] Glieman G, Yersin H. Strut. Bond., 1985,62:87~153
- [7] (a)Knoeppel D W, Shore S G. Inorg. Chem., 1996,35:1747~ 1748

- (b)Knoeppel D W, Shore S G. *Inorg. Chem.*, **1996,35**:5328~5334
 - (c)Knoeppel D W, Liu J, Meyers E A, et al. *Inorg. Chem.*, **1998,37**:4828~4837
- (d)Gao S, MA B Q, Wang Z M. Mol. Cryst. Liq. Cryst., 1999, 335:201~203
- [8] Du B, Meyers E A, Shore S G. Inorg. Chem., 2000,39:4639~ 645
- [9] Zhao B, Cheng P, Yan D, et al. Angew. Chem. Int. Ed., 2003, 42:934~936.
- [10]Ko Y H, Kim K, Kang K Ko, et al. *J. Am. Chem. Soc.*, **2004**, **126**:1932~1933