『 研究简报 』 # 四(1-乙烯基咪唑)二异硫氰酸镉的晶体结构和电化学性能 刘光烨 1.2 陈红纳 2 刘法谦**2 李少香 2 李荣勋 2 黄素逸 1 (1 华中科技大学能源与动力工程学院,武汉 430074) (2 青岛科技大学新材料研究重点实验室,青岛 266042) 关键词:镉(II)配合物;硫氰根配合物;循环伏安;晶体结构 中图分类号: 0614.24² 文献标识码: A 文章编号: 1001-4861(2007)06-1085-04 # Crystal and Electrochemical Property of Tetrakis(1-vinyl-1H-imidazole-kN³)diisothiocyanatocadmium(II) LIU Guang-Ye^{1,2} CHEN Hong-Na² LIU Fa-Qian^{*,2} LI Shao-Xiang² LI Rong-Xun² HUANG Su-Yi¹ ('Institute of Energy and Power, Huazhong University of Science and Technology, Wuhan 430074) ('Key Laboratory of Advanced Materials, Qingdao University of Science and Technology, Qingdao, Shandong 266042) **Abstract:** A complex $[Cd(NCS)_2(Vim)_4]$ (where Vim=1-vinylimidazole) was synthesized and it's crystal structure was determined by X-ray diffraction technique. The compound crystallizes in the Monoclinic space group $P2_1/c$ with the parameters: $a=0.858\,50(17)$ nm, $b=0.909\,90(18)$ nm, $c=1.782\,3(4)$ nm, $\beta=100.14(3)^\circ$, $V=1.370\,5(5)$ nm³, Z=2. In the structure, each Cd atom is coordinated by four 1-vinylimidazole ligands and a pair of monodentate isothiocyanic groups, affording a compressed octahedral CdN₆ core. The NCS⁻ anions are trans and four N atoms from the 1-vinylimidazole ligands define the equatorial plane. From the cyclic voltammogram measurement in H_2O , we know that the electrode reaction was a quasi-reversible process. CCDC: 630897. Key words: cadmium(II) complex; thiocyanato complex; cyclic voltammetry; crystal structure The structures of a few polymeric Lewis-base adducts of cadmium(II) thiocyanate, $[Cd(SCN)_2(L)_2]_n$ (where L is 2-, 3-, or 4-methylpyridine, imidazole, N-methylimi-dazole, benzylamine, dibenzylamine, tri-m-tolylphosphine or 1H-1,2,4-triazole), have been reported^[1-5]. In all these compounds, each pair of adjacent metal atoms are bridged by a pair of SCN^- groups through both ends, resulting in a chain-like structure comprising (-N-C-S-Cd)₂ eight-membered rings (Scheme 1). In this paper, however, we report a Lewis-base adducts of cadmium(II) thiocyanate with the structure of $[Cd(SCN)_2(Vim)_4]$ (1), in which no (-N-C-S-Cd)₂ eight-membered rings were found. $$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$ Scheme 1 Classic [Cd(SCN)₂(L)₂]_n structure # 1 Experimental ## 1.1 Physical measurements Elemental analyses were measured with a Perkin-Elmer 1400C analyzer. Electronic spectra were taken on a UV-Vis-NIR spectrophotometer. The cyclic 收稿日期:2006-12-15。收修改稿日期:2007-04-17。 国家自然科学基金(No.20601015)和山东省自然科学基金(No.Y2006B12)资助项目。 ^{*}通讯联系人。E-mail:qdplastics@163.com 第一作者:刘光烨,男,44岁,教授;研究方向:功能配合物。 voltammetry was performed by CHI 832 electrochemical analyzer with three-electrode system consisted of a glass carbon electrode (Φ =3 mm) as the working electrode, a Ag/AgCl electrode as the reference electrode, and a platinum wire as the auxiliary electrode. All the electrochemical measurements were carried out in a 10 mL electrolytic cell using 0.01 mol·L⁻¹ KCl solution as supporting electrolyte. #### 1.2 Synthesis The title compound was prepared by the reaction of 1-vinylimidazole (1.88 g, 20 mmol) with CdCl₂·0.5H₂O (1.14 g, 5 mmol) and potassium thiocyanate (0.98 g, 10 mmol) by means of hydrothermal synthesis in a stainless-steel reactor with a Teflon liner at 383 K for 24 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature. The C, H and N content was determined by elemental analysis (Anal. Cald. (%) for C₂₂H₂₄CdN₁₀S₂: C, 43.67; H, 3.99; N, 23.15. Found(%): C, 43.57; H, 4.07; N, 23.43). #### 1.3 Crystal structure determination The crystal with approximate dimensions of 0.40 mm \times 0.30 mm \times 0.30 mm was selected for the structure analysis. The diffraction data were collected on an Enraf-Nonius CAD4 diffractometer with graphite monochromatized Mo $K\alpha$ radiation (λ =0.071 073 nm) at the temperature of 293(2) K, using an ω -2 θ scan mode (2.32°<\theta<25.98°). The total collected reflections were 2 874, in which 2 689 were independent ones. The diffraction intensities were corrected for Lorentz and polarization effects and empirical absorption, and the data reduction using NRCVAX^[6] program. The structure was solved by direct methods using SHELXS-97 [7] program. All the non-hydrogen atoms were refined on F^2 anistropically by full-matrix least squares method using SHELXL-97^[7] program. All hydrogen atoms were placed in calculated positions assigned fixed isotropic thermal parameters at 1.2 times the equivalent isotropic U of the atoms to which they are attached and allowed to ride on their respective parent atoms. The contributions of these hydrogen atoms were included in structure-factor calculations. The final least-square cycle gave R_1 =0.040 4, wR_2 = 0.100 8 for 2 010 observed reflections with $I > 2\sigma(I)$; the weighting scheme, $w=1/[\sigma^2(F_0^2) + (0.0725)^2]$, where $P=(F_0^2 + 2F_c^2)/3$, the maximum shift $(\Delta/\sigma)_{max}=0.000$ and S=1.015. The maximum and minimum peaks on the final difference Fourier map corresponded to 634 e. nm⁻³ and -935 e·nm⁻³, respectively. Atomic scattering factors and anomalous dispersion corrections were taken from International Table for X-ray Crystallography [8]. Crystal and refinement data for the title complex are listed in Table 1. CCDC: 630897. Table 1 Crystal data and structure refinement parameters for the title compound | Empirical formula | $C_{22}H_{24}CdN_{10}S_2$ | μ / mm ⁻¹ | 0.979 | |---|---------------------------|--|--| | Formula weight | 605.03 | F(000) | 612 | | Temperature / K | 293(2) | Crystal size / mm | $0.40 \times 0.30 \times 0.30$ | | Crystal system | Monoclinic | θ range for data collection / (°) | 2.32 to 25.98 | | Space group | $P2_1/c$ | Limiting indices | $0 \leq h \leq 10, 0 \leq k \leq 11, -21 \leq l \leq 21$ | | a / nm | 0.858 50(17) | Reflections collected / independent reflections | $2874 / 2689 (R_{int}=0.0198)$ | | <i>b</i> / nm | 0.909 90(18) | Refinement method | Full-matrix least-squares on F^2 | | c / nm | 1.782 3(4) | Data/restraints/parameters | 2 689 / 1 / 161 | | β / (°) | 100.14(3) | Goodness-of-fit on F^2 | 1.015 | | V / nm ³ | 1.370 5(5) | Final R indices $[I>2\sigma(I)]$ | R_1 =0.040 4, wR_2 =0.100 8 | | Z | 2 | R indices (all data) | R_1 =0.061 2, wR_2 =0.114 9 | | $D_{ ext{c}}$ / (Mg \cdot m $^{-3}$) | 1.466 | Largest diff. peak and hole/ (e·nm ⁻³) | 634 and -935 | #### 2 Result and discussion #### 2.1 Crystal structure description Fig.1 shows the structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme, and Fig.2 shows a perspective view of the crystal packing in the unit cell. Selected bond lengths and bond angles are presented in Table 2. Symmetry code: A: -x+1,-y,-z Fig.1 Structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme The molecular structure of **1** is shown in Fig.1. The Cd atom displays a compressed octahedral coordination geometry, with six N atoms from two thiocyanate anions and four 1-vinylimidazole ligands. The equatorial plane of the complex is formed by four Cd-N(Vim) bonds, and the axial positions are occupied by two N-bonded NCS groups. The bond lengths of Cd-N2, N4 are 0.2347(3) and 0.2334(3) nm, respectively, which are comparable to the Cd-N(MeIM) [MeIM is 1-methylimidazole] distances reported previously, e.g. 0.2320(3) nm in [Cd(MeIM)₄{Ag(CN)₂]_n[Ag(CN)₂]_n^[9], but longer than those in the classic [Cd(SCN)₂(L)₂]_n complexes, e.g. 0.228 6(3) nm in [Cd(N-MeIM)₂(SCN)₂]_n[IM is imidazole]^[4]. The Cd-N(NCS)bond lengths of $0.234\,0(4)$ nm are also longer than those in the classic $[Cd\,(SCN)_2(L)_2]_n$ complexes, e.g. $0.234\,4(3)$ nm in $[Cd\,(N-MeIM)_2(SCN)_2]_n^{[5]}$, $0.232\,2(2)$ nm in $[Cd\,(IM)_2(SCN)_2]_n^{[4]}$. Fig.2 View of the crystal packing down the a axis, C-H···S intermolecular interactions were showed in dashed lines The values of the bond angles around cadmium are close to those expected for a regular octahedral geometry (Table 1), The trans angles are all 180° for symmetry requirements and the cis ones are all close 90° with ranges from 86.94(12)° to 93.06(12)°. The four imidazole rings are planar as expected. The thiocyanate ligands are almost linear [177.7(4)°], whereas a significant bending is displayed at the Cd-N-C-S linkage [147.8(4)°]. There exist some potentially weak C-H···S intermolecular interactions^[10] in the structure. The S1 atom with C7 atoms form weak C-H···S intermolecular interactions, and the donor and acceptor distances are 0.374 1(5) nm [Symmetry code: -x+1, y-1/2, -z+1/2]. Table 2 Selected bond lengths (nm) and bond angles (°) for the title complex | Cd-N(4) | 0.233 4(3) | N(1)-C(1) | 0.113 0(5) | C(5)-C(6) | 0.124 5(7) | |-----------------|------------|---------------------|------------|------------------|------------| | Cd-N(1) | 0.234 0(4) | N(3)-C(5) | 0.144 5(9) | C(10)-C(11) | 0.128 4(7) | | Cd-N(2) | 0.234 7(3) | N(5)-C(10) | 0.141 9(5) | | | | S(1)-C(1) | 0.161 5(4) | C(3)-C(4) | 0.134 8(7) | | | | N(4)#1-Cd-N(1) | 93.06(13) | N(1)-Cd-N(2) | 92.66(14) | C(6)-C(5)-N(3) | 123.6(8) | | N(4)-Cd- $N(1)$ | 86.94(13) | N(1)#1-Cd-N(2) | 87.34(14) | C(11)-C(10)-N(5) | 124.5(5) | | N(4)#1-Cd-N(2) | 93.10(12) | C(1)- $N(1)$ - Cd | 147.8(4) | | | | N(4)-Cd-N(2) | 86.90(12) | N(1)-C(1)-S(1) | 177.7(4) | | | Symmetry code: #1: -x+1, -y, -z. #### 2.2 Absorption spectroscopic studies The solution electronic spectrum of the title compound in C_2H_5OH exhibits an intense band at 210 nm, which is assigned to the $n \to \pi^*$ transition of the Vim ligands. There are not other transition peaks in electronic spectrum being assigned to LMCT and $d \to d$ transition. #### 2.3 Electrochemical studies The cyclic voltammetry behaviors of the titled complex from $-0.5\sim-1.1$ V were studied and the results were shown in Fig.3. The diagram displayed the one electron oxidation and reduction of metal center. The peak separation ΔE between anodic and cathode peaks was 0.156 V with $E_{\rm ps}$ =-0.783 V and $E_{\rm pc}$ =-0.939 Fig.3 Cyclic voltammogram of 2.0×10⁻⁴ mol·L⁻¹ title compound in 0.01 mol·L⁻¹ KCl V, therefore the electrode reaction was a quasi-reversible processs at scan rate 10 mV·s⁻¹ corresponding to the redox couple of Cd(II)/Cd(I). ## **References:** - [1] Ram G G, William P H, Marc J O, et al. *Inorg. Chem.*, 1981, 20:3924~3928 - [2] Taniguchi M, Ouchi A. Bull. Chem. Soc. Jpn., 1987,60:4172 ~4174 - [3] Taniguchi M, Sugita Y, Ouchi A. Bull. Chem. Soc. Jpn., 1987, 60:1321~1326 - [4] Chen H J, Yang G, Chen X M, et al. Acta Cryst., 1999,C55: 2012~2014 - [5] LIU Fa-Qian(刘法谦), JIAN Fang-Fang(建方方), WANG Qing-Xiang(汪庆祥), et al. Chin. J. Inorg. Chem., 2005,21: 1697~1700 - [6] Gabe E J, Le P Y, Charland J P, et al. J. Appl. Cryst., 1989, 22,384~387 - [7] Sheldrick G M. SHELXS-97, Program for X-ray Crystal Structure Solution, Göttingen University, Germany, 1997; Sheldrick G M. SHELXL-97, Program for X-ray Crystal Structure Refinement, Göttingen University, Germany, 1997. - [8] Wilson A J. International Table for X-ray Crystallography. Kynoch Press: Birmingham, England (Present distributor: Kluwer Academic Publisher: Dordrecht.), 1992; Volume C, Tables 6.1.1.4 (p500~502) and 4.2.6.8 (p219~222), respectively - [9] Soma T, lwarnmoto T. Inorg. Chem., 1996,35:1849~1856 [10] Steiner T. Cryst. Rev., 1996,6:1~57