アンシンシンシン (研究简报) シンシンシンシン

吡嗪-2, 3, 5, 6-四甲酸镍配合物[Ni(ptcH₂)(bpy)(H₂O)] 的水热合成、结构及性质

杨爱红 房素荣 张燕平 高洪苓* 崔建中* (天津大学化学系,天津 300072)

Hydrothermal Synthesis, Crystal Structure and Properties of a Nickel(II) Complex of Pyrazine-2,3,5,6-tetracarboxylic Acid

YANG Ai-Hong FANG Su-Rong ZHANG Yan-Ping GAO Hong-Ling CUI Jian-Zhong (Department of Chemistry, Tianjin University, Tianjin 300072)

Abstract: A complex of nickel (II) with pyrazine-2,3,5,6-tetracarboxylic acid and 2,2 -bipyridine, [Ni (ptcH₂) (bpy) (H₂O)], was synthesized by hydrothermal reaction of Ni (NO₃)₂ · 6H₂O with pyrazine-2,3,5,6-tetracarboxylic acid and 2,2 -bipyridine at 160 and characterized by elemental analysis, IR and X-ray diffraction single crystal structure determined. The crystal belongs to Monoclinic system, with space group P2₁/c, a=1.327 9(7) nm, b=1.279 7(7) nm, c= 1.161 4(7) nm; =113.435(8) °, V=1.810 6(17) nm³, Z=4. The coordination environment of nickel (II) ion is a distorted octahedral geometry. The title complex is a mononuclear structure which is assembled into 3D supramolecular architecture by strong hydrogen bonds. CCDC: 661507.

Key words: nickel complex; pyrazine-2,3,5,6-tetracarboxylic acid; hydrogen bonds; decarboxylation

吡嗪羧酸类配合物的研究在无机化学、生物模 拟及分析化学等学科领域内都有重要的理论意义 和应用前景。近年来,大量有趣的具有电学、磁性及 光谱性质和生物活性的吡嗪羧酸类配合物被合成 出来^[1-4],探索这类配合物的有效合成路径,研究其 结构性质,识别不同环境下小分子水簇以验证和校 准对各形态水的研究吸引了人们的注意力^[56]。吡嗪 四甲酸配体不仅具有不同功能的配位原子 N 和 O, 并且有 4 个羧基,具有多个配位点,羧基氧原子的 配位模式多样性,可采用单齿、双齿、三齿及四齿桥 联模式,可以和不同的金属原子形成稳定的配合 物。在不同的 pH 值下羧酸又因去质子化程度不同, 带来附加的配位模式,因此羧酸配体在不同条件 下,如调节溶液 pH 值、加入中性小分子配体、改变 溶剂、改变反应的温度等,可以形成零维,一维,二 维,三维等结构多样的配合物。

但是文献中对吡嗪-2,3,5,6-四甲酸 (ptcH₄)的 配合物研究报道很少 ^[5-8],特别是含有 2,2 -联吡啶 (bpy) 作为第二种配体的配合物的研究尚未见文献 报道,本文选择吡嗪-2,3,5,6-四甲酸为配体与 Ni (NO₃)₂·6H₂O 反应,合成了新配合物[Ni (ptcH₂)(bpy) (H₂O)],解析了其单晶结构,讨论了配合物的结构特

收稿日期:2007-10-10。收修改稿日期:2007-12-24。 *通讯联系人。E-mail: cuijianzhong@tju.edu.cn 第一作者:杨爱红,女,31岁,硕士研究生;研究方向:功能配合物。

点和性质。

1 实验部分

1.1 试剂与仪器

元素分析用 Perkin-Elemer 240 型元素分析仪 完成; 单晶结构用 BRUKER SMART 1000 CCD X-射线单晶衍射仪测定;红外光谱用 Magna-560 FTIR 型红外光谱仪测定(KBr 压片)。ptcH₄ 是根据文献^[9] 由四甲基吡嗪合成;其它所用试剂均为分析纯。

1.2 配合物[Ni(ptcH₂)(bpy)(H₂O)]的合成

将 0.2 mmol (0.052 0 g) ptcH₄, 0.2 mmol (0.031 2 g) bpy, 0.2 mmol (0.058 2 g) Ni (NO₃)₂ · 6H₂O 和 10 mL H₂O 加入到 25 mL 水热反应釜中, 在 160 的温度 下恒温反应 24 h, 以 3 · h⁻¹ 降温至 100 , 再以 1 · h⁻¹降温至室温。所得产物用水洗 2 次。选出的长 方体状单晶体进行 X-ray 单晶衍射结构测定。配合 物的产量为 0.051 8 g, 产率为 53%。元素分析结果, 实验值(%): C 44.21; H 2.42; N 11.57; 按照 C₁₈H₁₂N₄ NiO₈计算的理论值(%): C 44.35; H 2.46; N 11.50。

1.3 配合物[Ni(ptcH2)(bpy)(H2O)]的结构测定

选取大小 0.20 mm ×0.18 mm ×0.14 mm 的单 晶,用 BRUKER SMART 1000 CCD X-射线单晶衍 射仪,采用石墨单色器的 Mo K 辐射(=0.071 073 nm)作为衍射光源,在 293(2) K 温度下,以 - 扫描 方式,在 1.67° 25.01 (-15 h 14, -15 k 13, -11 l 13)范围内,收集衍射数据。配合物由 直接法解出(SHELXS-97)^[10],以理论方法加氢,使用 SHELXL-97 程序对结构进行精修^[11]。对氢原子和非 氢原子分别采用各向同性和各向异性热参数对结 构进行全矩阵最小二乘法修正。主要晶体学数据列 于表 1。

CCDC: 661507。

বহু 1	配 吕 物[NI(ptcH ₂)(bpy)(H ₂ O)] 的 晶 体子数 掂
Table 1	Crystallographic data for [Ni(ptcH ₂)(bpy)(H ₂ O)]

Empirical formula	$C_{18}H_{12}N_4NiO_9$	Z	4
Formula weight	487.03	D _c / (g· cm ⁻³)	1.787
Crystal size / mm	0.20 ×0.18 ×0.14	µ/ mm ⁻¹	1.139
Temperature / K	293(2)	F(000)	992
Crystal system	Monoclinic	range / ()	1.67~25.01
Space group	P21/c	Reflections collected / unique	9 197 / 3 188
a/nm	1.327 9(7)	Goodness of fit on F ²	1.065
b / nm	1.279 7(7)	R	0.029 9
c / nm	1.161 4(7)	wR	0.068 6
/(9	113.435(8)	Parameters	297
V / nm³	1.810 6(17)	_{max} , _{min} / (e⋅nm ⁻³)	350, - 229

2 结果与讨论

2.1 红外光谱

在 4 000~400 cm⁻¹ 范围内测定了配合物 [Ni(ptcH₂)(bpy)(H₂O)]的 IR 谱。谱图中 3278 cm⁻¹处 的吸收峰为分子中配位水的振动吸收; 1 720 cm⁻¹ 处的吸收峰为未配位的羧基伸缩振动吸收峰, 因配 合物生成, 共轭体系的共平面性被偏离, C=O 吸收 频率移向了较高波数; 1 583 cm⁻¹和 1 442 cm⁻¹处的 吸收峰分别为配位羧酸根的对称和反对称伸缩振 动吸收峰, 而且吸收峰在较低波数也说明了羧基参 与了配位; 769 cm⁻¹为 bpy 的吡啶环的特征振动吸 收峰。[Ni(ptcH₂)(bpy)(H₂O)]的红外光谱分析与其晶 体结构解析结果一致。

2.2 晶体结构

配合物[Ni (ptcH₂)(bpy)(H₂O)]的晶体结构如图 1 所示。由图 1 可见, [Ni (ptcH₂)(bpy)(H₂O)]分子为单核 配合物,中心原子 Ni (II)为六配位,1 个三齿的 ptcH₂²⁻(ONO)、1 个双齿的 bpy(NN)和一个水分子分 别与 Ni(II)配位,其主要键长和键角列于表 2。Ni(II) 的配位构型为变形八面体,其中 N(1), N(4), O(1)和 O (8)构成赤道平面,它们的扭转角是-4.37(9) °,可以认 为它们基本处于同一平面上。bpy上的 N(3)和配位 水分子在轴向位置与 Ni(II)配位。赤道平面与 ptcH₂²⁻ 的吡嗪环几乎共面,赤道平面与 bpy 的吡啶环几乎 垂直。在配合物[Ni (ptcH₂)(bpy)(H₂O)]中, Ni-N 键键长 介于 0.2017(3)~0.2036(3) nm 之间, Ni-O 键长介于 0.2062(2)~0.2087(2) nm 之间, Ni-N 键长要比 Ni-O 主。 副合物的部门键长和键色

Table 2 Selected bond lengths (nm) and angles (9) for the title complex					
Ni(1)-N(4)	0.201 7(3)	Ni (1)-N(3)	0.203 6(3)	Ni (1)-O(9)	0.207 2(2)
Ni(1)-N(1)	0.202 2(2)	Ni(1)-O(1)	0.206 2(2)	Ni(1)-O(8)	0.208 7(2)
N(4)-Ni(1)-N(1)	174.85(9)	N(3)-Ni(1)-O(1)	94.17(9)	N(4)-Ni(1)-O(8)	107.27(10)
N(4)-Ni(1)-N(3)	79.82(10)	N(4)-Ni(1)-O(9)	91.19(9)	N(1)-Ni(1)-O(8)	76.65(9)
N(1)-Ni(1)-N(3)	103.79(9)	N(1)-Ni(1)-O(9)	85.47(8)	N(3)-Ni(1)-O(8)	89.26(10)
N(4)-Ni(1)-O(1)	98.96(9)	N(3)-Ni(1)-O(9)	170.04(9)	O(1)-Ni(1)-O(8)	153.73(8)
N(1)-Ni(1)-O(1)	77.24(8)	O(1)-Ni(1)-O(9)	91.45(9)	O(9)-Ni(1)-O(8)	89.33(9)

键长短,说明 N 的配位能力要比 O 要强,这与以往 的文献报道一致¹¹²。

Symmetry code: * x, y=0.5, -z+1.5; * 1-x, -0.5+y, 1.5-z; ** 1+x, y, z 图 1 配合物[Ni(ptcH₂)(bpy)(H₂O)]的分子结构图 Fig.1 Molecular structure of the complex for [Ni(ptcH₂)(bpy)(H₂O)]

在配合物[Ni (ptcH₂)(bpy)(H₂O)]中,每个 ptcH₄分 子失去 2 个羧基上的氢原子,以 ptcH₂²配位, ptcH₂² 的 3,5 位羧基氧原子没有与 Ni(II)配位,而是分别与 2 个相邻的 bpy 上的氢原子形成氢键; ptcH₂² 的 2 位羧酸根上的 2 个氧原子分别与相邻的 bpy 的 6,6 位 N 上的氢原子形成氢键。如图 2 所示。另外, 沿 a 轴方向,与 Ni(II)配合的水分子上的 2 个氢原子 分别与相邻的 ptcH₂²上未配位 2 个羧基氧形成 O-H...O氢键。主要氢键键长和键角列于表 3,均与文 献报道的键长键角数据符合^[13]。由于氢键的作用,使 得配合物构成稳定的三维网状结构。

表 3 配合物的氢键的键长和键角

Table 3	Hvdroaen	bond lend	ths and	angles fo	r the title	complex

Donor- Hacceptor	D-H / nm	HA / nm	DA / nm	D- HA / ()
C(9CA)- H(9CA)O(4AB) ⁱ	0.093 0(3)	0.251 5(6)	0.327 5(8)	139.2(2)
C(12D)- H(12D)O(1AB) ⁱⁱ	0.093 0(4)	0.254 4(8)	0.337 0(9)	148.22(22)
C(15D)- H(15D)O(2AB) ⁱⁱ	0.093 1(4)	0.237 9(2)	0.325 0(5)	155.72(22)
C(17A)- H(17A)O(5AB) ⁱⁱⁱ	0.093 1(4)	0.249 9(4)	0.327 1(7)	140.45(20)
O(9)- H(9A)O(4) ^{iv}	0.076 2(30)	0.197 4(32)	0.273 4(17)	175.26(363)
O(9)- H(9B)O(5) ^{iv}	0.083 4(38)	0.186 7(38)	0.270 0(3)	177.35(359)

Symmetry code: ' - x, y- 0.5, - z+1.5; " 1- x, - 0.5+y 1.5- z, " 1+x, y, z, ' - x,- y+1,- z+1.

另外, 据文献报道, ptcH₄与金属盐在水热条件 下生成配合物时会出现脱羧现象, Brown Uniersity 的 Yigit 在 120 的水热条件下, 铜盐与 ptcH₄反应 时脱去了 2 个羧基^[14]。本文在 160 的高温条件下 镍(II)盐与 ptcH₄ 反应未出现脱羧现象, 说明温度可 能不是脱羧的主要原因。该反应是在 pH=3 的条件 下进行的, ptcH₂² 3, 5 位 2 个羧基的氢原子没有解 离, 并且形成了氢键, 推测可能是氢键的形成对这 2 个羧基起到了稳定作用。目前为止, 人们对脱羧的 确切机理还有待进一步深入研究。

参考文献:

- [1] Li X H, Shi Q, Hu M L, et al. Inorg. Chem. Commun., 2004, 7:912–914
- [2] Beobide G, Castillo O, Luque A, et al. Inorg. Chem. Commun., 2003,6:1224~1227
- [3] Zhang X M, Fang R Q. Inorg. Chem., 2005,44:3955~3959
- [4] Wang F Q, Zheng X J, Wan Y H, et al. J. Mol. Struct., 2006, 798:155~161
- [5] Ghosh S K, Bharadwaj P K. Eur. J. Inorg. Chem., 2005:4880 ~4885

- [6] Ghosh SK, Bharadwaj PK. Inorg. Chem., 2004, 43:6887~6889
- [7] Ghosh S K, Fallah M S E, Ribas J, et al. Inorg. Chim. Acta, 2006,359:468~474
- [8] Ghosh S K, Bharadwaj P K. J. Mol. Struct., 2006,796:119~ 122
- [9] Wolff L, Deutsch B. Chem. Ges., 1887,20:425
- [10]Sheldrick G M. SHELXS-97, Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1997.
- [11]Sheldrick G M. SHELXL-97, Program for the Refinement of Crystal Structures, University of Gottingen, Germany, 1997.
- [12]JIANG Yi-Min(蒋毅民), YIN Xiu-Ju(银秀菊). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2001,17(7):589~592
- [13]GAO Hong-Ling(高洪苓), ZHANG Hong(张 虹), KANG Huai-Ping(康怀萍), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2007,23(6):1099~1102
- [14]Yigit M V, Wang Y, Moulton B, et al. Cryst. Growth Des., 2006,6:829~832