具有类 CsCl 拓扑的 Co^{II} 配位聚合物的合成,结构与磁性

林健斌 陈小明*

(中山大学化学与化学工程学院/教育部生物无机与合成化学重点实验室,广州 510275)

摘要:本工作在溶剂热条件下合成了 2 例以二核或三核 Co[□]为节点,具有八连接类 CsCl 拓扑的配位聚合物:[Co(na)(ina)]和 [Co₃(na)₄(1,4-chdc)](Hna=nicotinic acid, Hina=isonicotinic acid, 1,4-H₂chdc=cyclohexane-1,4-dicarboxylic acid)。磁性研究表明,2 个配合物均呈现反铁磁行为。

关键词: CsCl; 拓扑结构; 反铁磁

中图分类号: 0614.81⁺2 文献标识码: A 文章编号: 100-4861(2008)08-1300-05

Syntheses, Structures and Magnetic Properties of Two Co^{II} Polymers with CsCl-like Topology

LIN Jian-Bin CHEN Xiao-Ming*

(MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275)

Abstract: Two three-dimensional coordination polymers, namely [Co (na) (ina)] (1) and [Co₃ (na)₄ (1,4-chdc)] (2) (Hna=nicotinic acid, Hina=isonicotinic acid, 1,4-H₂chdc=cyclohexane-1,4-dicarboxylic acid), with 8-connected CsCl-like topology, have been solvothermally synthesized. The temperature-dependent magnetic susceptibilities were also determined, showing antiferromagnetism in both compounds. CCDC: 688479, 1; 688480, 2.

Key words: CsCl; topology; antiferromagnet

The design and synthesis of coordination polymers with three-dimensional (3D) frameworks featuring interesting topologies have been the focus of intense research activity in recent years^[1~5]. The major structural types found in coordination polymers are low-connected topologies in which d-block metal ions are used as nodes for three-, four-, or six-connected^[1,3~6]. The local connectivity numbers larger than six in coordination polymers are rare because of the low coordination sites of d-block metal ions and the sterically demanding nature of organic ligands^[7]. Generally, there

are two ways for constructing highly connected coordination polymers. One is employing *f*-block metal ions centers to construct seven- and eight-connected coordination polymers^[8,9]. The other is based on metal clusters, which is effective to overcome the low coordination numbers of *d*-block metal ions and steric hindrance^[10-12]. Herein, we report two new 3D coordination polymers, namely [Co(na)(ina)] (1) and [Co₃(na)₄(1,4-chdc)] (2) (Hna=nicotinic acid, Hina=isonicotinic acid, 1,4-H₂chdc=cyclohexane-1,4-dicarboxylic acid), which show 8-connected CsCl-like topology with Co₂ or Co₃

收稿日期:2008-05-19。收修改稿日期:2008-06-23。

[&]quot;973 计划"(No.2007CB815302)和广东省科技厅(No.04205405)的资助。

^{*}通讯联系人。E-mail:cxm@mail.sysu.edu.cn

第一作者:林健斌,男,25岁,硕士研究生;研究方向:配位化学。

clusters acting as eight-connected nodes, respectively.

1 Experimental

1.1 Reagents and physical measurements

Commercially available reagents were used as received without further purification. Elemental analyses (C, H, N) were performed on a Vario EL elemental analyzer. The FTIR (KBr pellet) spectra were recorded from KBr pellets in the range of 400~4 000 cm⁻¹ on a Bruker TENSOR 27 FTIR spectrometer. X-ray powder diffraction (XRPD) patterns were measured at a Rigaku D/M-2200T automated diffractometer. Magnetic susceptibility measurements of 1 and 2 were performed on a poly-crystalline sample fixed with GE7031 varnish on a Quantum Design MPMS-XL7 SQUID. Data were corrected for the diamagnetic contribution calculated from Pascal constants.

1.2 Synthesis of [Co(na)(ina)] (1)

A DMF solution (7 mL) containing $CoCl_2 \cdot 6H_2O$ (0.238 g, 1 mmol), isonicotinic acid (0.123 g, 1 mmol) and nicotinic acid (0.123 g, 1 mmol) was placed in a Parr Teflon-lined stainless-steel bomb (15 mL), which was sealed and placed in a programmable furnace. The temperature was raised to 160 °C and held at that temperature for 72 h, then cooled to room temperature at 5 °C ·h $^{-1}$. The resulting light blue crystals were collected (0.04 g, ca. 13.2% yield based on Co). Anal. calcd (%) for $C_{12}H_8CoN_2O_4$: C 47.55; H 2.66; N 9.24. Found(%): C 47.18; H 2.87; N 9.34. IR(cm $^{-1}$): 3 436.4 w, 3 062.8w, 1 627.8vs, 1 544.9s, 1 421.5vs, 1 200.9w,

1047.0w, 858.3m, 765.7m, 700.1s, 565.9w, 443.6m.

1.3 Synthesis of $[Co_3(na)_4(1,4-chdc)]$ (2)

A DMF solution (6 mL) containing $CoCl_2 \cdot 6H_2O$ (0.238 g, 1 mmol), nicotinic acid (0.123 g, 1 mmol) and 1,4-H₂chdc (0.172 g, 1 mmol) was placed in a Parr Teflon-lined stainless-steel bomb (15 mL), which was sealed and placed in a programmable furnace. The temperature was raised to 170 °C and held at that temperature for 72 h, then cooled to room temperature at 5 °C · h ⁻¹. The resulting deep blue crystals were collected (0.02 g, ca. 6.6% yield based on Co). Anal. calcd (%) for $C_{32}H_{26}Co_3N_4O_{12}$: C 46.01; H 3.14; N 6.71. Found(%): C 45.94; H 3.25; N 6.81. IR (cm⁻¹): 3 449.3w, 2 920.0w, 1 616.3vs, 1 570.0vs, 1 523.7s, 1 394.5vs, 1 284.5w, 1 195.8m, 1 043.4m, 1 101.5w, 858.3w, 756.1 m, 702.1m, 569.1w, 447.5m.

1.4 Crystal structure determination

Diffraction intensities were collected on a Bruker Apex CCD area-detector diffractometer (Mo $K\alpha$). Absorption corrections were applied by using multi-scan program SADABS^[13]. The structures were solved with direct methods and refined with a full-matrix least-squares technique with the SHELXTL program package^[14]. Anisotropic thermal parameters were applied to all the non-H atoms. The organic H atoms were generated geometrically. Crystal data as well as details of data collection and refinements for the complexes are summarized in Table 1.

CCDC: 688479, 1; 688480, 2.

m 11 4	C . 11 1.1			-	1.0
Table 1	Crystallographic	data for	complexes	1	and 2

Complex	1	2
Formula	$\mathrm{C_{12}H_8CoN_2O_4}$	$C_{32}H_{26}Co_3N_4O_{12}$
Formula weight	303.13	835.37
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/c$ (No.14)	C2/c (No.15)
a / nm	0.975 1(2)	2.292 4(3)
b / nm	1.171 1(3)	1.039 37(15)
c / nm	1.148 1(3)	1.353 2(2)
β / (°)	112.694(4)	105.250(2)
V / nm^3	1.209 6(5)	3.110 7(8)
Z	4	4
$D_{ m c}$ / (g \cdot cm $^{ extsf{-3}}$)	1.665	1.784

Continued Table 1		
$\mu({ m Mo}~Klpha)$ / ${ m mm}^{-1}$	1.429	1.657
Reflections collected	5 042	7 130
Unique reflns / $R_{\rm int}$	2 369 / 0.023 2	2 711 / 0.042 4
R_1 , wR_2 [$I > 2\sigma(I)$]	0.036 1, 0.093 1	0.086 2, 0.250 4
R_1 , wR_2 (all data)	0.042 1, 0.095 9	0.101 0, 0.264 7
GOF	1.046	1.036
$\Delta \rho_{ m min/max}$ / (e • nm ⁻³)	766 / -440	1 021 / -1 868

 $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|, \ w \\ R_2 = [\sum w (|F_0| - |F_c|)^2 / \sum w |F_0|^2]^{1/2}.$

2 Results and discussion

2.1 Crystal structure of 1

The crystal structure of 1 is shown in Fig.1. Selected bond lengths and angles are given in Table 2. Each Co II ion is coordinated to three na and two ina ligands in a distorted octahedral N_2O_4 geometry (Co-N/O 0.199 9(2)~0.223 0(2) nm). Each na ligand acts as a μ_3 -ligand with its carboxylate group bridging two Co II ions that are separated by 0.411 9 nm. Each ina ligand acts as a μ_2 -ligand with its carboxylate group chelating a Co II ion. In other words, each dinuclear Co II cluster

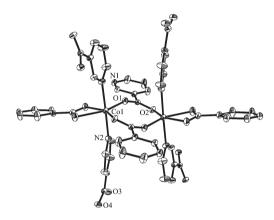


Fig.1 Dinuclear Co^{II} structure of complex **1**

Table 2 Selected bond lengths (nm) and angles (°) of complexes 1 and 2

		Complex	x 1		
Co(1)-O(1)	0.199 9(2)	Co(1)-O(4B)	0.213 2(2)	Co(1)-N(1C)	0.216 9(2)
Co(1)-O(2A)	0.202 0(2)	Co(1)-N(2)	0.215 6(2)	Co(1)-O(3B)	0.223 0(2)
O(1)-Co(1)-O(2A)	115.63(8)	O(4B)-Co(1)-N(2)	86.18(9)	O(1)-Co(1)-O(3B)	150.66(8)
O(1)-Co(1)-O(4B)	90.81(8)	O(1)-Co(1)-N(1C)	87.65(8)	O(2A)-Co(1)-O(3B)	93.58(7)
O(2A)-Co(1)-O(4B)	153.56(8)	O(2A)-Co(1)-N(1C)	89.45(8)	O(4B)-Co(1)-O(3B)	60.01(7)
O(1)-Co(1)-N(2)	92.49(9)	O(4B)-Co(1)-N(1C)	91.79(9)	N(2)-Co(1)-O(3B)	88.74(9)
O(2A)-Co(1)-N(2)	92.32(8)	N(2)-Co(1)- $N(1C)$	177.97(9)	N(1C)- $Co(1)$ - $O(3B)$	90.15(9)
		Complex	x 2		
Co(1)-O(6)	0.207 5(5)	Co(2)-O(3)	0.199 6(5)	Co(2)-N(1D)	0.208 5(7)
Co(1)-O(4)	0.215 1(5)	Co(2)-O(2)	0.205 7(7)	Co(2)-O(1)	0.231 5(7)
Co(1)-N(2B)	0.215 9(6)	Co(2)-O(5)	0.206 0(6)	Co(2)-O(6)	0.233 7(6)
O(6)-Co(1)-O(6A)	91.8(3)	O(3)-Co(2)-O(2)	102.8(3)	O(5)-Co(2)-O(1)	83.2(2)
O(6)-Co(1)-O(4A)	91.7(2)	O(3)-Co(2)-O(5)	113.0(2)	N(1D)-Co(2)-O(1)	91.8(2)
O(6)-Co(1)-O(4)	92.8(2)	O(2)-Co(2)-O(5)	137.8(2)	O(3)-Co(2)-O(6)	97.8(2)
O(4A)-Co(1)-O(4)	173.5(3)	O(3)-Co(2)-N(1D)	95.2(2)	O(2)-Co(2)-O(6)	95.8(2)
O(6)-Co(1)-N(2B)	88.2(2)	O(2)-Co(2)-N(1D)	103.9(3)	O(5)-Co(2)-O(6)	58.9(2)
O(6)-Co(1)-N(2C)	179.9(3)	$\mathrm{O}(5)\text{-}\mathrm{Co}(2)\text{-}\mathrm{N}(1\mathrm{D})$	94.6(3)	N(1D)-Co(2)-O(6)	153.3(2)
O(4)-Co(1)-N(2C)	87.3(2)	O(3)-Co(2)-O(1)	161.6(2)		
N(2B)-Co(1)-N(2C)	91.9(3)	O(2)-Co(2)-O(1)	58.9(2)		

Symmetry codes for 1: A: -1-x, -y, -1-z; B: -x, 0.5+y, -0.5-z; C: x, 0.5-y, -0.5+z; for 2: A: -x, y, 0.5-z; B: x, 1-y, -0.5+z; C: -x, 1-y, 1-z; D: 0.5-x, 0.5+y, 0.5-z.

binds simultaneously to four na and four ina ligands. By treating the dinuclear cluster as a single node and the ligand as linker, a CsCl-like^[15] 3D network sustained by 8-connected nodes is formed, as illustrated in Fig.2.

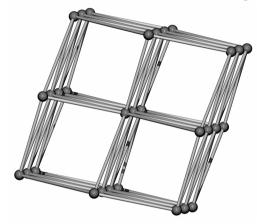


Fig.2 CsCl-like net

2.2 Crystal structure of 2

The crystal structure of 2 is shown in Fig.3 (a). Selected bond lengths and angles are given in Table 2. Two Co II ions are crystallographically unique, and both have distorted octahedral environments. Co(1) is located at a twofold axis, and coordinated to four na and two

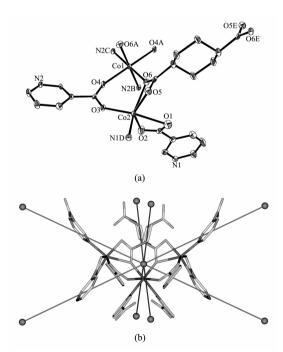


Fig.3 (a) Coordination environments in 2 (symmetry codes: A: -x, y, 0.5-z; B: x, 1-y, -0.5+z; C: -x, 1-y, 1-z;
D: 0.5-x, 0.5+y, 0.5-z; E: -x+1/2, y-1/2, -z+1/2);
(b) view of the 8-connected trinuclear connected to eight neighbors in 2

1,4-chdc ligands in a distorted octahedral N₂O₄ geometry (Co-N/O 0.207 5(5)~0.215 9(6) nm). Co(2) is coordinated to three na and one 1,4-chdc ligands in a distorted octahedral NO₅ geometry (Co-N/O 0.199 6(5)~ 0.233 7(6) nm). One na acts as a μ_3 -ligand with its carboxylate group bridging two Co II ions that are separated by 0.383 1 nm, the other acts as a μ_2 -ligand with its carboxylate group chelating a Co atom. Each 1,4-chdc acts as a μ_4 -ligand with each carboxylate group connects two Co ^{II} ions with the μ_2 - η^1 : η^2 mode. In other words, each trinuclear Co I cluster binds to eight na ligands and two 1,4-chdc ligands simultaneously. By treating the trinuclear as a single node, the 8-connected node connects to eight neighbors through these ten ligands (Fig.3(b)), forming a CsCl-like 3D network similar to complex 1, as illustrated in Fig.2.

2.3 Magnetic properties

The phase purities of **1** and **2** used for magnetic measurement have been confirmed by XRPD (Fig.4). The variable-temperature magnetic susceptibilities of **1** and **2** were measured in the temperature range from 300 to 2 K (Fig.5), at a magnetic field strength of 1 000 Oe.

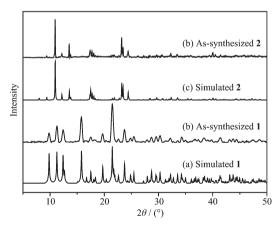


Fig.4 XRPD patterns of 1 and 2

For 1, the $\chi_{\rm m}T$ value at room temperature is ca. 5.23 cm³·mol⁻¹·K, higher than the spin-only value of 3.75 cm³·mol⁻¹·K expected for two noncoupled Co ^{II} ions with g=2.0, owing to a significant orbital contribution of a high-spin octahedral Co ^{II}. The $\chi_{\rm m}T$ product decreases with decreasing temperature, which is a typical behavior of the antiferromagnetically coupled magnetic pair. The magnetic susceptibility in the range of 300~50 K can be well fitted by the Curie-Weiss law

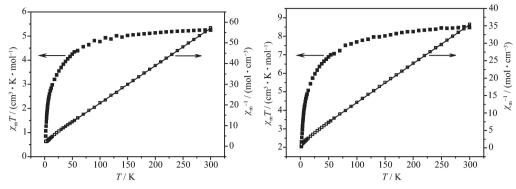


Fig.5 $\chi_{\rm m}T$ -T and $\chi_{\rm m}^{-1}$ -T for **1** (left) and **2** (right) from 300 to 2 K at 1000 Oe

with a Curie constant $C=5.51 \text{ cm}^3 \cdot \text{mol}^{-1} \cdot \text{K}$ and a Weiss constant θ of -14.6 K, which is a further indication of the weak antiferromagnetic interactions in **1**.

For 2, the $\chi_{\rm m}T$ value at room temperature is ca. 8.45 cm³·mol⁻¹·K, higher than the spin-only value of 5.625 cm³·mol⁻¹·K expected for three noncoupled Co^{II} ions with g=2.0, owing to a significant orbital contribution of a high-spin octahedral Co^{II}. The $\chi_{\rm m}T$ product decreases with decreasing temperature, which is a typical behavior of the antiferromagnetically coupled magnetic pair. The magnetic susceptibility in the range of 300~50 K obeys the Curie-Weiss law with a Curie constant C=8.94 cm³·mol⁻¹ K and a Weiss constant θ of -16.3 K in 2. The absolute values of Weiss constant θ of θ is larger than 1. According to the crystal structures, the single bridging oxygen can be assumed that the superexchange interactions between Co^{II} ions of 2 is stronger than 1.

References:

[1] Batten S R, Robson R. Angew. Chem. Int. Ed., 1998,37:1461~ 1494

- [2] Robson R. J. Chem. Soc., Dalton Trans., 2000:3735~3744
- [3] Carlucci L, Ciani G, Proserpio D M. Coord. Chem. Rev., 2003, 246:247~289
- [4] Zhang J P, Lin Y Y, Zhang W X, et al. J. Am. Chem. Soc., 2005,127:14162~14163
- [5] Halper S R, Do L, Stork J R, et al. J. Am. Chem. Soc., 2006, 128:15255~15268
- [6] Ferey G, Mellot-Draznieks C, Serre C, et al. Acc. Chem. Res., 2005,38:217~225
- [7] Zhang X M, Zheng Y Z, Li C R, et al. Cryst. Growth Des., 2007,7:980~983
- [8] Long D L, Blake A J, Champness N R, et al. Angew. Chem. Int. Ed., 2001,40:2444~2447
- [9] Long D L, Hill R J, Blake A J, et al. Angew. Chem. Int. Ed., 2004,43:1851~1854
- [10]Li D, Xiao P, Zhou R, et al. Angew. Chem. Int. Ed., 2005,44: 4175~4178
- [11]Zhang X M, Fang R Q, Wu H S. J. Am. Chem. Soc., 2005, 127:7670~7671
- [12]Cairns A J, Perman J A, Wojtas L, et al. J. Am. Chem. Soc., 2008,130:1560~1561
- [13]Sheldrick G.M. SADABS 2.05. University Göttingen, Germany
- [14]SHELXTL 6.10. Bruker Analytical Instrumentation: Madison, Wisconsin, USA, 2000.
- [15]Zhang M, Kang Y, Zhang J, et al. Eur. J. Inorg. Chem., 2006: 2253~2258