アンシンシン 研究简报 Section of the sec

一维链状配位聚合物[Cd{5-(NO2)sal}2(2,2'-bipy)], 的合成与晶体结构

温德才*谢静钟春龙拓宏桂 (龙岩学院化学系,龙岩 364000)

关键词:配位聚合物;5-硝基水杨酸;镉(Ⅱ);晶体结构

中图分类号: 0614.24² 文献标识码: A 文章编号: 1001-4861(2008)10-1718-03

Synthesis and Crystal Structure of 1D Coordination Polymer $[Cd{5-(NO_2)sal}_2(2,2'-bipy)]_n$ with 5-nitrosalicylate Ligand

WEN De-Cai* XIE Jing ZHONG Chun-Long TA Hong-Gui (Department of Chemistry, Longyan University, Longyan, Fujian 364000)

Abstract: A coordination polymer of $[Cd{5-(NO₂)sal}_2(2,2'-bipy)]_n$ (5-(NO₂)sal=5-nitrosalicylate, 2,2'-bipy=2,2'-bipyridine) was synthesized by hydrothermal reaction and characterized by elemental analysis, IR and X-ray diffraction single crystal structure analysis. The title complex crystallizes in monoclinic with space group C2/c, $a=2.730\ 8(16)\ \text{nm}$, $b=1.272\ 3(5)\ \text{nm}$, $c=0.674\ 5(3)\ \text{nm}$, $\beta=96.73(2)^{\circ}$, $V=2.327(2)\ \text{nm}^3$, Z=4, $R=0.022\ 2$, wR=0.057. The 5-nitrosalicylate anions doubly bridge the Cd(II) atoms to form one-dimensional polymeric chain with the repeated eight-membered ring units (Cd-O-C-O)₂. The crystal structure is stabilized by intra- and interchain hydrogen bonds interactions. CCDC: 694568.

Key words: coordination polymer; 5-nitrosalicylic acid; cadmium(II); crystal structure

Salicylic acid and its substituted derivatives continue to attract attention because of its versatile coordination modes and biological applications [1-3]. Many complexes with salicylic acid and N-donor ligands, such as 2,2′-bipyridine, 1,10-phenanthroline and 4,4′-bipyridine, were found to display diverse structure types [4-8]. In addition, the coordination geometry of metal ion and the shape and bonding mode of the ligand are generally the primary considerations in metal-mediated self-assembly reactions. Relatively small changes in the bridging ligand can give rise to large changes in the overall structure of the assembly [9]. For example, Liu et al. reported a 1D left- and right-handed helical chain complex [Co {3,5-(NO₂)₂sal} (phen)]_n [10], and a 1D poly-

meric chain complex $[Cd \{3,5-(NO_2)_2sal\} (2,2'-bipy)]_n^{[11]}$ consisting of the repeated basic four-membered ring units and eight-membered ring units. In compared with many 3,5-dinitrosalicylate complexes, only a few 5-nitrosalicylate complexes have been found. Recently, we reported a novel molecular square structure complex $Co_4(phen)_4\{5-(NO_2)sal\}_4^{[12]}$. As part of our ongoing investigation, a new Cd^{\parallel} complex with 5-(NO₂)sal ligand, has been prepared and its structure determined.

1 Experimental

1.1 Reagent and apparatus

All of the chemicals were obtained from commercial sources and were used without further

收稿日期:2008-04-21。收修改稿日期:2008-07-08。

福建省教育厅资助项目(No.JA02261);龙岩市科技局资助(No.2003LY03)。

^{*}通讯联系人。E-mail:wendecai1227@yahoo.com.cn

第一作者:温德才,男,42岁,博士,副教授;研究方向:配位化学。

purification. Elemental analyses were conducted on a Perkin-Elmer 2400 CHN elemental analyzer. The IR spectra were recorded on a BRUKER EQUINOX 55 FTIR spectrometer using KBr pellet.

1.2 Synthesis of $[Cd{5-(NO₂)sal}(2,2-bipy)]_n$

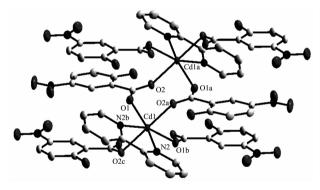
A mixture of $Cd(NO_3)_2 \cdot 6H_2O$ (0.035 g, 0.1 mmol), 2,2′-bipy (0.016 g, 0.1 mmol), 5-nitrosalicylic acid (0.037 g, 0.2 mmol) and distilled water (10 mL) was put into a Teflon-lined autoclave (20 mL) and then heated at 413 K for 48 h. Yellow block-like crystals of **1** in 85% yield based on Cd. Anal. Found (%): C 45.76; H 2.67; N 8.75. Calc. for $C_{24}H_{16}N_4O_{10}Cd$ (M_r =632.81) (%): C 45.55; H 2.55; N 8.85.

1.3 Crystal structure determination

A yellow block-like single crystal with dimensions of 0.33 mm \times 0.30 mm \times 0.28 mm for the title complex was used for X-ray diffraction structure analysis. Data collection was carried out at 293 K on a Rigaku RAXIS -RAPID Weissengberg IP diffractometer with graphite monochrocmatized Mo $K\alpha$ radiation (λ =0.071 073 nm) using ω scan mode. A total of 10 992 reflections and 2 674 unique ones $(R_{int}=0.0287)$ were collected in the range of $3.00^{\circ} \le \theta \le 27.48^{\circ}$, of which 2 490 reflections with $I > 2\sigma(I)$ were considered as observed and used in the succeeding structural calculations. The structure was solved by direct method and difference Fourier syntheses. All non-hydrogen atoms with the anisotropical thermal parameters were refined by full-matrix least-squares method on F^2 . The aromatic H atoms were positioned geometrically and were included in the refinement in the riding-model approximation [C-H= 0.093 nm and $U_{iso}(H)=1.2U_{eq}(C)$]. The hydroxyl H atom was found in a difference Fourier map and were refined with distance restraints of O-H=0.082(1) nm and $U_{iso}(H)$ =1.2 $U_{\rm eq}$ (O). All calculations were carried out with SHELX-97 program^[13].

The Crystal belongs to monoclinic system, the space group is C2/c, with the crystal cell parameters a= 2.730 8(16) nm, b=1.272 3(5) nm, c=0.674 5(3) nm, β = 96.73(2)°, and V=2.327(2) nm³, M_r =632.81, D_c =1.806 g·cm⁻³, μ =1.009 mm⁻¹, F(000)=1 264, Z=4, R=0.022 2, wR=0.057 0, S=1.066, Δ/σ =0.000, $(\Delta\rho)_{max}$ =374 e·nm⁻³ and $(\Delta\rho)_{min}$ =-734 e·nm⁻³.

CCDC: 694568.


2 Results and discussions

2.1 IR spectra

The IR spectrum of the title complex reveals two strong bonds of the carboxylic groups at 1 604 and 1 445 cm⁻¹ for the asymmetric vibrations and symmetric vibrations, respectively. The difference between the asymmetric and symmetric stretching vibrations ($\Delta \nu = \nu_{\rm as}({\rm COO^-}) - \nu_{\rm s}({\rm COO^-})$) indicates that the 5-nitrosalicylate anions coordinated as a bridging carboxylic group [14]. A band at 1 513 cm⁻¹ is assigned to $\nu_{\rm as}$ (aromatic NO₂) and a band at 1 337 cm⁻¹ is assigned to $\nu_{\rm s}$ (aromatic NO₂)

2.2 Crystal structure

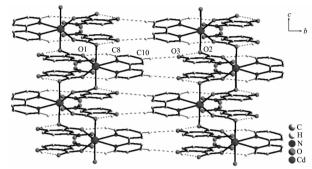
The crystal structure of the title complex was constructed from one-dimensional polymeric chain with the repeated eight-membered ring units. A segment of the molecular structure of the title complex is illustrated in Fig.1. The selected bond distances and angles of the title complex are given in Table 1.

Symmetry codes: a: 1-x, 1-y, 1-z; b: 1-x, y, 1.5-z; c: x, 1-y, 0.5+z

Fig.1 A segment of the molecular structure of the title complex with 30% probability ellipsoid; H atoms have been omitted for clarity

The Cd(II) atom in the title complex is coordinated by four O atoms from four 5-nitrosalicylate ligands and two N atoms from a 2,2'-bipy ligand in a distorted octahedral coordination geometry. The 2,2'-bipy ligand lies on a twofold axis and chelates to the Cd(II) atom with normal bond distances and angles. The two rings in the 2,2'-bipy ligand are a little twisted relative to each other with a dihedral angle of 13.26(7)°.

The 5-nitrosalicylate ligands act as bridging ligands in the title complex. Each 5-nitrosalicylate


Table 1	Selected bond	lengths (nm)	and angles	(°) for	the title complex
Table 1	Selected Dolla	ienguis (iiii)	and angles	() 101	me une comp

			8 \ /	8 ()		
-	Cd(1)-O(1)	0.221 3(2)	Cd(1)-O(1) ^a	0.221 3(2)	Cd(1)-N(2)	0.235 0(2)
	$\mathrm{Cd}(1) ext{-}\mathrm{N}(2)^a$	0.235 0(2)	$\mathrm{Cd}(1)\text{-}\mathrm{O}(2)^{\mathrm{b}}$	0.236 2(2)	$\mathrm{Cd}(1)\text{-}\mathrm{O}(2)^{\mathrm{c}}$	0.236 2(2)
	$\mathrm{O}(1)\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(1)^a$	115.47(8)	O(1)- $Cd(1)$ - $N(2)$	156.63(5)	O(1)a -Cd(1)-N(2)	87.49(6)
	$\mathrm{O}(1)\text{-}\mathrm{Cd}(1)\text{-}\mathrm{N}(2)^a$	87.49(6)	$\mathrm{O}(1)\mathrm{a}\text{-}\mathrm{Cd}(1)\text{-}\mathrm{N}(2)^{\mathrm{a}}$	156.63(5)	$\mathrm{N}(2)\text{-}\mathrm{Cd}(1)\text{-}\mathrm{N}(2)^{\scriptscriptstyle a}$	70.08(8)
	$\mathrm{O}(1)\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(2)^{\mathrm{b}}$	87.96(6)	$\mathrm{O}(1)\mathrm{a}\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(2)^\mathrm{b}$	92.94(6)	$N(2)\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(2)^{\mathrm{b}}$	95.50(5)
	$N(2)a\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(2)^{\mathrm{b}}$	83.11(5)	$O(1)$ - $Cd(1)$ - $O(2)^{c}$	92.94(6)	$\mathrm{O}(1)\mathrm{a}\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(2)^{\mathrm{c}}$	87.96(6)
_	$N(2)\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(2)^{\scriptscriptstyle \mathrm{c}}$	83.11(5)	$N(2)a\text{-}Cd(1)\text{-}O(2)^{\circ}$	95.50(5)	$\mathrm{O}(2)\mathrm{b}\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(2)^{\mathrm{c}}$	178.32(6)

Symmetry codes: a -x+1, y, -z+3/2; b x, -y+1, z+1/2; c -x+1, -y+1, -z+1.

ligand is coordinated to two Cd(II) via two oxygen atoms from a carboxylate group. The dihedral angle of the carboxylate group and the aromatic ring in 5-nitrosalicylate ligand is $8.9(2)^{\circ}$. Two 5-(NO₂)sal ligands bridge two Cd(II) atoms to form zigzag chain along the c axis (Fig.2). The polymeric chain has a repeat unit formed by two 5-(NO₂)sal ligand and two Cd(II) atoms related by an inversion centre. The repeat unit of the eight-membered ring (Cd-O-C-O)₂ assumes a chair-like structure. The Cd ··· Cd separation in the eight-membered ring is 0.4669(1) nm.

In the title complex, the hydroxyl group is involved in an intramolecular hydrogen bond with the carboxyl O atom. The phenyl hydrogens of 2,2'-bipy form weak

Symmetry codes: a: x+1, y+1, -z+1.5; b: -x+1, y, -z+1.5

Fig.2 Extended 2D structure in the title complex; Hydrogen bonds are shown as dashed lines

intra- and interchain C-H···O hydrogen bonds with the carboxyl and hydroxyl O atoms, resulting in extended 2D supramolecular network structure (Table 2, Fig.2).

Table 2 Hydrogen bond lengths and angles for the complex

D–H···A	d(D-H) / nm	$d(\mathbf{H}\cdots\mathbf{A})$ / nm	$d(\mathrm{D}\cdots\mathrm{A})$ / nm	∠(DHA) / (°)
O(3)-H(3)···O(2)	0.081(1)	0.180(1)	0.254 6(2)	154(2)
$C(10)H(10A)\cdots O(3)^a$	0.093	0.269	0.336 3(3)	129.8
$C(8){-}H(8A){\cdots}O(1)^{\scriptscriptstyle b}$	0.093	0.256	0.317 9(3)	124.3

Symmetry code: ${}^{a}x+1, y+1, -z+1.5; {}^{b}-x+1, y, -z+1.5.$

References:

- [1] Lemoine P, Viossat B, Dung N H, et al. J. Inorg. Biochem., 2004,98:1734~1749
- [2] Thurston J H, Kumar A, Hofmann C, et al. *Inorg. Chem.*, 2004,43:8427~8437
- [3] Wang Y, Odoko M, Okabe N. Acta Cryst., 2004,C60:m479~ m481
- [4] Zhu L G, Kitagawa S, Miyasaka H, et al. *Inorg. Chim. Acta*, 2003,355:121~126
- [5] Yin M C, Yuan L J, Ai C C, et al. Polyhedron, 2004,23:529
 ~536
- [6] He X, Bi M H, Ye K Q, et al. *Inorg. Chem. Commun.*, 2006,9: 1165~1168

- [7] Wen D C, Liu S X, Ribas J. Inorg. Chem. Commun., 2007,10: 661~665
- [8] Wen D C, Liu S X, Ribas J. Polyhedron, 2007,26:3849~3856
- [9] Lehaire M L, Scopelliti R, Herdeis L, et al. *Inorg. Chem.*, 2004,43:1609~1617
- [10] Wen D C, Liu S X, Lin M. *J. Mol. Struct.*, **2007**, **876**:154~161
- [11]Wen D C, Liu S X. Chinese J. Struct. Chem., 2007,11:1360~1366
- [12]Wen D C, Xie T Y. *Inorg. Chem. Commun.*, **2007**,**10**:1531~1533
- [13] Sheldrick G M. SHELX-97, Program for Delermination of Crystal Structure, University of Göttingen, Germany, 1997.
- [14]Zheng Y, Xu D M, Liu S X. *Inorg. Chim. Acta*, **1999,294**:163 ~169