双核 Ru 配合物(C₅Me₄Bu)₂Ru₂(CO)₄的合成与晶体结构

马志宏 ^{1,2} 赵明霞 ¹ 林 进*,¹ (¹河北师范大学化学与材料科学学院,石家庄 050016) (²河北医科大学基础医学院,石家庄 050017)

关键词: 羰基钌; 二聚物; 结构; 环戊二烯基

中图分类号: O614.82*1 文献标识码: A

文章编号: 1001-4861(2009)02-0377-04

Synthesis and Crystal Structure of Isobutyl-Substituted Tetramethylcyclopentadienyl Diruthenium Metal Carbonyl Complex

MA Zhi-Hong^{1,2} ZHAO Ming-Xia¹ LIN Jin^{*,1}

(¹College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050016) (²College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017)

Abstract: The complex $(C_5\text{Me}_4^i\text{Bu})_2\text{Ru}_2(\text{CO})_4$ has been synthesized by the reaction of $C_5\text{Me}_4^i\text{BuH}$ with $\text{Ru}_3(\text{CO})_{12}$ in refluxing xylene and its molecular structure was characterized by elemental analysis, IR spectra, ^1H NMR and X-ray crystal structure determination. Crystal data for this compound: Triclinic, space group $P\overline{1}$, M_r =668.78, α =0.865 96(17) nm, α =0.892 90(18) nm, α =0.975 7(2) nm, α =88.39(3)°, α =71.64(3)°, α =84.99(3)°, α =0.713 3(2) nm³, α =1.557 g·cm³, α =1.091 mm³, α =1.091 mm³, α =1.0025 3, α =1.0057 6 (observed reflections with α =1.0068 2(all reflections). The structure of the dimer confirms the structure with bridging and terminal CO groups, and the Ru-Ru bond distance is 0.275 19(8) nm. CCDC: 693389.

Key words: ruthenium carbonyl; dimer; structure; cyclopentadienyl

Cyclopentadienyl metal complexes have been extensively investigated since ferrocene has been discovered. Replacement of the hydrogen atoms by other substituents alters both the steric and electronic influences of the η^5 -cyclopentadienyl ring, resulting in differing reactivity and stability of the substituted cyclopentadienyl metal complexes^[1]. Especially for metallocene polymerization catalysts, the steric and electronic effects of cyclopentadienyl ring substituents greatly influence catalytic activity^[2]. In this study, the

reaction of isobutyl-substituted tetramethylcyclopentadiene with $\mathrm{Ru}_3(\mathrm{CO})_{12}$ was reported. The aim is to obtain a deeper insight into the steric influences of substituents on the molecular structures and reactions of the corresponding biscyclopentadienyl dinuclear metal carbonyl complexes.

1 Experimental

1.1 General procedures

All operations involving air- or moisture-sensitive

收稿日期:2008-09-16。收修改稿日期:2008-11-24。

河北省自然科学基金资助项目(No.B2008000150)和河北师范大学博士启动基金资助项目(No.L2005B18)。

^{*}通讯联系人。E-mail:linjin64@126.com

第一作者:马志宏,女,35岁,讲师;研究方向:金属有机化学。

compounds were carried out under an argon atmosphere using standard Schlenk techniques. Diethyl ether, xylene, and n-hexane were freshly distilled from sodium/benzophenone ketyl under argon prior to use. Methylene chloride was distilled over P_2O_5 under argon. 2,3,4,5-tetramethylcyclopentenone was purchased from Aldrich. Column chromatography was carried out on alumina column using dichloromethane and petroleum ether as eluent.

¹H NMR spectra was recorded on a Bruker AV 300 instrument, while IR spectrum was recorded as KBr pellet on FT IR-8900 spectrometer. Elemental analysis was performed on a VarioEL Ⅲ analyzer. The ligand C₅Me₄/BuH was synthesized according to the literature^[3].

1.2 Synthesis of $[\eta^5-(C_5Me_4^iBu)_2Ru_2(CO)_4]$

A solution of C_5Me_4 BuH (0.25 g, 1.41 mmol) and $Ru_3(CO)_{12}$ (0.3 g, 0.47 mmol) in 30 mL of xylene was refluxed for 12 h. After removal of solvent, the residue was chromatographed on an alumina column using petroleum ether/ CH_2Cl_2 as eluent. The orange band afforded complex as red crystals (0.358 g, 76%). m.p. 193~195 °C. Anal. Calc. for $C_{30}H_{42}O_4Ru_2$ (%): C, 53.87; H, 6.28. Found (%): C, 53.68; H, 6.35. ¹H NMR (300 MHz, $CDCl_3$): 2.15 (4H, d, $C_5Me_4CH_2CH(CH_3)_2$ $^3J_{HH}$ =7.5 Hz), 0.82 (12H, d, $CH(CH_3)_2$, $^3J_{HH}$ =6.9 Hz), 1.723 (12H,

s, $C_5(CH_3)_2$), 1.780 (12H, s, $C_5(CH_3)_2$), 1.57 ~1.62(2H, m, $CH(CH_3)_2$), IR (KBr, ν_{CO} , cm⁻¹): 1938 (s), 1744 (s).

1.3 Crystal structure determination

suitable orange-red block crystal with dimensions of 0.14 mm \times 0.12 mm \times 0.08 mm was selected for structure analysis. The data collection was performed on a Bruker Smart 1000 CCD diffractometer equipped with a Mo $K\alpha$ radiation (λ =0.071 073 nm). A total of 4 050 reflections were collected in the range of $2.75^{\circ} \leq \theta \leq 25.02^{\circ}$ using SMART program, of which 2 483 were unique (R_{int} =0.033 8) and 2 295 with (I> $2\sigma(I)$) were considered as observed. Semiempirical absorption corrections were applied using the SADABS program^[4]. The structure was solved by direct method and refined by full-matrix least squares. All calculations were performed using the SHELXTL program system. The final full-matrix least-squares refinement gave R=0.025 3, wR=0.067 6 ($w=1/[\sigma^2(F_0^2)+$ $(0.030 \text{ } 6P)^2 + 0.008 \text{ } 3P$, where $P = (F_0^2 + 2F_0^2)/3$) based on 2 295 observed reflections with $I>2\sigma(I)$. S=1.069, $(\Delta/\sigma)_{\text{max}}$ =0.000, $(\Delta\rho)_{\text{max}}$ =515 e·nm⁻³ and $(\Delta\rho)_{\text{min}}$ =-520 e· nm⁻³. The crystal data and summary of X-ray data collection are presented in Table 1. Selected bond lengths and angles are listed in Table 2.

CCDC: 693389.

Table 1 Crystal data and structure refinement for the title complex

Empirical formula	$C_{30}H_{42}O_4Ru_2$	μ / mm $^{-1}$	1.091	
Formula weight	668.78	F(000)	342	
Temperature / K	113(2)	Crystal size / mm		
Wavelength / nm	0.071 073	heta range for data collection / (°)	2.75 to 25.02	
Crystal system	Triclinic	Limiting indices	$-10 \leqslant h \leqslant 9, -10 \leqslant k \leqslant 10, -10 \leqslant l \leqslant 11$	
Space group	$P\overline{1}$	Reflections collected / unique (R_{int})	4 050 /2 483 (0.033 8)	
a / nm	0.865 96(17)	Completeness to θ =25.02° / %	98.2	
<i>b</i> / nm	0.892 90(18)	Absorption correction	Semi-empirical from equivalents	
c / nm	0.975 7(2)	Max. and min. transmission	0.917 8 and 0.862 3	
α / (°)	88.39(3)	Refinement method	Full-matrix least-squares on F^2	
β / (°)	71.64(3)	Data / restraints / parameters	2 483 / 6 / 169	
γ / (°)	84.99(3)	Goodness of fit on F^2	1.070	
V / nm ³	0.713 3(2)	Final R indices $[I>2\sigma(I)]$	R_1 =0.025 3, wR_2 =0.067 6	
Z	1	R indices (all data)	R_1 =0.026 9, wR_2 =0.06 8	
$D_{ m c}$ / (g \cdot cm $^{-3}$)	1.557	Largest diff. peak and hole / (e·nm ⁻³)	515 and -520	

Tuble 2 Selected bond distances (min) and angles () for the title complex							
Ru1-C6	0.229 4(3)	C4-C5	0.142 3(4)	O2-C2	0.118 7(3)		
Ru1-C7	0.227 1(2)	C5-C6	0.143 4(4)	Ru-Cp(CEN)	0.191 16		
C2-Ru1(A)	0.204 6(3)	C6-C7	0.143 6(3)				
C3-C4	0.143 8(4)	O1-C1	0.114 6(3)				
Ru1-C2-Ru1(A)	84.81(10)	C1-Ru1-C3	94.69(10)	C2(A)-Ru1-C4	95.81(10)		
C1-Ru1-C2	92.95(11)	C2-Ru1-C3	132.78(10)	C1-Ru1-Ru1(A)	94.46(8)		
C1-Ru1-C2(A)	93.06(11)	C1-Ru1-C4	113.29(10)	C2-Ru1-Ru1(A)	47.77(7)		
C2-Ru1-C2(A)	95.19(10)	C2-Ru1-C4	150.85(10)	C2(A)-Ru1-Ru1(A)	47.42(7)		

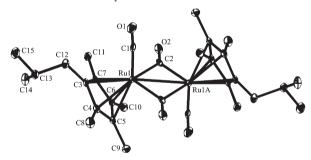
Table 2 Selected bond distances (nm) and angles (°) for the title complex

Symmetry code: (A) -x+1, -y+1, -z+1; CEN: centroid of the cyclopentadienyl ring.

2 Results and discussion

2.1 Synthesis of (C₅Me₄Bu)₂Ru₂(CO)₄

When ligand C_5Me_4BuH reacted with Ru_3 (CO)₁₂ under refluxing xylene for 12 h, the corresponding Ru-Ru bonded dinuclear complex (76%) was obtained (Scheme 1). Slow evaporation of the solvent from the complex in hexane- CH_2Cl_2 solution gave single crystal suitable for X-ray diffraction.


Scheme 1

The ¹H NMR spectra of the diruthenium complex shows two groups of singlets for the four methyl protons. The IR spectra of diruthenium complex shows a strong terminal carbonyl absorption at 1 938 cm⁻¹ and a strong bridging carbonyl absorption at 1 744 cm⁻¹. This result agrees with the single crystal structure.

2.2 Crystal Structure of (C₅Me₄ⁱBu)₂Ru₂(CO)₄

The crystal structure of the dimer (Fig.1) reveals that the complex has a *trans* conformation with two bridging carbonyl ligands. Similar to the cyclopentadienyl analogue trans-[η^5 -CpRu(CO)(μ -CO)] $_2$ ^[5] (where Cp=cyclopentadienyl ligand), both the structures are trans form and have C_i symmetry. The two cyclopentadienyl

ring planes are parallel. Two carbonyls are bridged and two carbonyls are terminal. The Ru-Ru bond distance is 0.275 19(8) nm and the Ru-Cp centroid is 0.191 16 nm. The Ru-Ru Bond distance is slightly longer than that in trans-[η^5 -CpRu(CO)(μ -CO)]₂ [0.273 5(2) nm]^[5], and trans-[η^5 -CpMe₄hexRu(CO)(μ -CO)]₂ [0.274 29(8) nm]^[6], is slightly shorter than that in [$(\eta^5$ -C₅Me₅)Ru(CO)(μ -CO)]₂ [0.275 2(1) nm]^[7], and [$(\eta^5$ -C₅Me₄Et)Ru(CO)(μ -CO)]₂ [0.275 84(5) nm]^[8]. This distance is comparable to those found in other substituted cyclopentadienyl ruthenium di-carbonyl dimers^[9].

Displacement ellipsoids are drawn at the 30% probability level; Symmetry code: A: -x+1, -y+1, -z+1

Fig.1 Structure of the title complex with the atomic numbering scheme

In conclusion, comparing the range of structures that have been determined for complexes of the type $Cp*_2Ru_2(CO)_4$ (where Cp*=substituted cyclopentadienyl ligand), we find that the same overall structure with two bridging and two terminal CO groups is presented in all compounds. We also see that the Cp* ligands are *trans* in the dimeric structures in the solid state. Changing the substituents has only a small effect on the Ru-Ru

bond length as well as on the Ru-CO (bridge) bond lengths.

References:

- [1] (a)King R B. Coord. Chem. Rev., 1976,20:155~169
 - (b)Stalke D. Angew. Chem., Int. Ed. Engl., 1994,33:2168 ~ 2171
 - (c)Jutzi P, Burford N. Chem. Rev., 1999,99:969~990
 - (d)Sitzmann H. Coord. Chem. Rev., 2001,214:287~327
 - (e)Arndt S, Okuda J. Chem. Rev., 2002,102:1953~1976
 - (f)Qian Y L, Huang J L, Bala M D, et al. *Chem. Rev.*, **2003**, **103**:2633~2690
- [2] (a)Möhring P C, Coville N J. J. Organomet. Chem., **1994,479**:1 ~29

- (b)Möhring P C, Coville N J. Coord. Chem. Rev., **2006,250**:18 ~35
- [3] Bensley D M, Mintz E A, Sussangkarn S J. J. Org. Chem., 1988, 53:4417~4419
- [4] Sheldrick G M. SADABS Bruker Area Detector Absorption Corrections, Bruker AXS Inc., Madison, WI, 1996.
- [5] Mills O S, Nice J P. J. Organomet. Chem., 1967,9:339~344
- [6] Siyabonga N, Mikael H, Susan J, et al. J. Organomet. Chem., 2008,693:343~348
- [7] Steiner A, Gornitzka H, Stalke D, et al. J. Organomet. Chem., 1992,431:C21~C25
- [8] Bailey N A, Radford S L, Sanderson J A, et al. J. Organomet. Chem., 1978,154:343~351
- [9] Schumann H, Stenz S, Girgsdies F, et al. Naturforsch., 2002, 57b:1017~1026