基于三核镉的二维金属有机骨架 [$Cd_3(L)_2(cis-1,4-chdc)_2(trans-1,4-chdc)$]的合成、结构和表征

徐占林*.1 马晓媛 1 刘 洋 2 孔治国 1 (1 吉林师范大学化学学院,四平 136000) (2 吉林师范大学物理学院,四平 136000)

关键词:金属有机骨架;晶体结构;三核镉;1,4-环己二甲酸

中图分类号: 0614.24⁺2 文献标识码: A 文章编号: 1001-4861(2010)11-2117-04

Synthesis, Structure and Characterization of a Two-Dimensional Cd(II)-Organic Framework Based on Trinuclear Cd(II) Clusters: [Cd₃(L)₂(cis-1,4-chdc)₂(trans-1,4-chdc)]

XU Zhan-Lin^{*,1} MA Xiao-Yuan¹ LIU Yang² KONG Zhi-Guo¹ (¹Department of Chemistry, Jilin Normal University, Siping, Jilin 136000) (²Department of Physics, Jilin Normal University, Siping, Jilin 136000)

Abstract: The title metal-organic framework, $[Cd_3(L)_2(cis-1,4-\text{chdc})_2(trans-1,4-\text{chdc})]$ (1, L=2-(4-fluorophenyl)-1H-imidazo [4,5-f][1,10]phenanthroline, 1,4-H₂chdc=1,4-cyclohexanedicarboxylic acid) has been synthesized under hydrothermal condition and characterized by elemental analysis, IR and single-crystal X-ray diffraction. It crystallizes in triclinic, space group $P\bar{1}$ with a=0.851 71(17) nm, b=1.199 9(2) nm, c=1.521 4(3) nm, α =68.13(3)°, β =79.48(3)°, γ =82.32(3)°, V=1.415 0(5) nm³, Z=1, C_{62} H₅₂Cd₃F₂N₈O₁₂, M_r =1 476.32, D_c =1.732 g·cm⁻³, F(000)=738, μ (Mo $K\alpha$)=1.197 mm⁻¹, R=0.067 6 and wR=0.135 4. The cis-1,4-chdc²- ligands bridge the Cd(II) cations to form a trinuclear Cd(II) based double chain along the a axis. Further, the trans-chdc²- ligands link the adjacent double chains to yield an interesting two-dimensional network. The L ligands are attached on both sides of the layers. CCDC: 792221.

Key words: metal-organic framework; crystal structure; trinuclear Cd(II); 1,4-cyclohexanedicarboxylic acid

0 Introduction

Metal-organic frameworks (MOFs) based on polynuclear metal clusters are an attractive area of research in recent years due to their interesting molecular topologies and potential applications as functional materials^[1-5]. The polynuclear metal clusters can be very

versatile in terms of coordination properties and rigidity as well as displaying intriguing physical properties in comparison with mononuclear species^[6-8]. In order to fabricate desired polynuclear metal cluster, the choice of organic ligands has gradually become established as a useful strategy^[9-11]. In this regard, the multi-carboxylate building blocks with special configurations are

收稿日期:2010-04-12。收修改稿日期:2010-08-02。

四平市科技发展基金(No.四科 2009011)资助项目。

^{*}通讯联系人。E-mail:xuzljl@yahoo.com.cn

widely selected in design of the polynuclear metal cluster. Following this idea, a variety of MOFs based on polynuclear metal clusters have been obtained using the multi-carboxylate building blocks^[12]. Typically, 1,3-benzenedicarboxylic acid and 1,4-benzenedicarboxylic acid have been widely used for the design and synthesis of the MOFs with polynuclear metal cluster ^[13]. However, so far, less effort has been made on the 1,4-cyclohex-anedicarboxylic acid (1,4-H₂chdc). Here, we selected 1,4-H₂chdc as an organic linker and L (L=2-(4-fluorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) as a N-donor chelating ligand, generating a new two-dimensional MOF, [Cd₃(L)₂(cis-1,4-chdc)₂(trans-1,4-chdc)] (1).

1 Experimental

1.1 Generals

The L ligand was synthesized according to the reported method^[14] and all other materials were analytical reagent grade and used as received without further purification. Elemental analysis was carried out with a Perkin-Elmer 240C analyzer; IR spectra were obtained on a Perkin-Elmer 2400LSII spectrometer.

1.2 Synthesis and crystal growth

 $CdCl_2 \cdot 2.5H_2O$ (1 mmol), 1,4- H_2chdc (1 mmol) and L (0.5 mmol) were placed in water (12 mL), and triethylamine was added until the pH value of the solution was about 5.6. The resultant solution was heated at 456 K in a Teflon-lined stainless steel autoclave for five days. The reaction system was then slowly cooled to room temperature. Pale yellow crystals of 1 suitable for single crystal X-ray diffraction analysis were collected from the final reaction system by filtration, washed several times with distilled water and dried in air at ambient temperature. Yield: 39% based on Cd(II). IR (KBr, cm⁻¹): 1 615m, 1 612w, 1 580m, 1 542 m, 1 465w, 1 342m, 732w, 628w. Anal. Calcd. For $C_{62}H_{52}$ $Cd_3F_2N_8O_{12}(\%)$: C, 50.40; H, 3.52; N, 7.59. Found(%): C, 50.62; H, 3.65; N, 7.22.

1.3 X-ray structure determination

A single crystal with dimensions of 0.28 mm× 0.21 mm×0.18 mm was selected and mounted on a Rigaku RAXIS-RAPID single crystal diffractometer equipped with a narrow-focus, 5.4 kW sealed tube X-

ray source (graphite-monochromated Mo $K\alpha$ radiation, $\lambda = 0.071~073~\text{nm}$) at a temperature of (20 ± 2) °C. The data processing was accomplished with the PROCESS-AUTO processing program. Out of the total 13 838 reflections collected in the $3.02^{\circ} \leq \theta \leq 27.48^{\circ}$ range, 6 394 were independent with $R_{\rm int}$ =0.08, of which 4 088 were considered to be observed ($I > 2\sigma(I)$) and used in the succeeding refinement. The structure was solved by Direct Method with SHELXS-97 program^[15] and refined with SHELXL 97^[16] by full-matrix least-squares techni ques on F^2 . All non-hydrogen atoms were refined anisotropically and hydrogen atoms isotropically. The final R=0.0676 and wR=0.1354 $(w=1/[\sigma^2 (F_0^2)+(0.0426P)^2]$ +1.974 0P], where $P=(F_o^2+2F_c^2)/3$). S=1.113, $(\Delta \rho)_{max}=$ 1 134 e·nm⁻³, $(\Delta \rho)_{min}$ =-1 614 e·nm⁻³ and $(\Delta/\sigma)_{max}$ =0.000. CCDC: 792221.

2 Results and discussion

2.1 Description of crystal structure

The selected bond distances and angles are listed in Table 1. The single-crystal analysis of the structure reveals that compound 1 is a two-dimensional network built up by L, cis- and trans-1,4-chdc²⁻ ligands with Cd (II) cations. The trans-chdc²⁻ ligand lies about an inversion centre. As shown in Fig.1, the Cd1 shows a distorted monocapped trigonal prism coordination geometry, coordinated by five oxygen atoms from two different cis-1,4-chdc²⁻ and one trans-1,4-chdc²⁻ ligands, and two nitrogen atoms from one L ligand. The Cd2 cation, however, is six-coordinated by six carboxylate oxygen atoms from four distinct cis-1,4-chdc2- and two different trans-1,4-chdc²⁻ ligands in a distorted octahedral coordination environment. The Cd-O bond lengths vary from 0.221 4(5) to 0.255 9(5) nm, and the Cd-N distances are 0.232 2(6) and 0.241 3(6) nm. The Cd-O and Cd-N distances are comparable with the reported ones^[17]. The cis-1,4-chdc²⁻ ligands bridge the Cd(II) cations to form a trinuclear Cd(II) based double chain along the a axis (Fig.2). Further, the trans-chdc² ligands link the adjacent double chains to yield an interesting two-dimensional network. The L ligands are attached on both sides of the layers (Fig.2). A better insight into the structure of 1 can be achieved by the

Table 1 Selected bond distances (nm) and angles (*)					
Cd(1)-O(1)	0.234 1(4)	Cd(1)-O(2)	0.246 6(5)	Cd(1)-O(6)i	0.222 9(6)
$\mathrm{Cd}(1)\text{-}\mathrm{O}(3)^{\mathrm{iii}}$	0.255 9(5)	$\mathrm{Cd}(1)\text{-}\mathrm{O}(4)^{\mathrm{iii}}$	0.233 3(5)	Cd(1)- $N(1)$	0.232 2(6)
Cd(1)- $N(2)$	0.241 3(6)	Cd(2)- $O(1)$	0.228 2(5)	$\mathrm{Cd}(2)\text{-}\mathrm{O}(5)^{i}$	0.221 4(5)
$\mathrm{Cd}(2)\text{-}\mathrm{O}(1)^{i}$	0.228 2(5)	$\mathrm{Cd}(2)\text{-}\mathrm{O}(3)^{iii}$	0.233 6(4)	$\mathrm{Cd}(2)\text{-}\mathrm{O}(3)^{ii}$	0.233 6(4)
$\mathrm{O}(3)^{\mathrm{iii}}\text{-}\mathrm{Cd}(2)\text{-}\mathrm{O}(3)^{\mathrm{ii}}$	180	O(6)i-Cd(1)-N(1)	95.4(2)	$O(6)i\text{-}Cd(1)\text{-}O(4)^{iii}$	150.0(2)
$N(1)\text{-}Cd(1)\text{-}O(4)^{\mathrm{iii}}$	107.90(19)	O(6)i-Cd(1)-O(1)	85.4(2)	N(1)-Cd(1)-O(1)	132.98(18)
$\mathrm{O}(4)^{\mathrm{iii}}\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(1)$	91.97(18)	O(6)i-Cd(1)-N(2)	81.7(2)	N(1)-Cd(1)-N(2)	70.2(2)
$\mathrm{O}(4)^{\mathrm{iii}}\text{-}\mathrm{Cd}(1)\text{-}\mathrm{N}(2)$	88.6(2)	O(1)- $Cd(1)$ - $N(2)$	154.67(19)	O(6)i-Cd(1)-O(2)	116.1(2)
N(1)-Cd(1)-O(2)	85.14(18)	$\mathrm{O}(4)^{\mathrm{iii}}\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(2)$	85.20(19)	O(1)-Cd(1)-O(2	53.78(17)
N(2)-Cd(1)-O(2)	151.28(19)	$\mathrm{O}(6)\mathrm{i}\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(3)^{\mathrm{iii}}$	97.9(2)	$\mathrm{N}(1)\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(3)^{\mathrm{iii}}$	149.87(16)
$\mathrm{O}(4)^{\mathrm{iii}}\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(3)^{\mathrm{iii}}$	52.90(16)	$\mathrm{O}(1)\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(3)^{iii}$	75.21(16)	$\mathrm{N}(2)\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(3)^{\mathrm{iii}}$	85.09(18)
$\mathrm{O}(2)\text{-}\mathrm{Cd}(1)\text{-}\mathrm{O}(3)^{\mathrm{iii}}$	112.58(17)	$\mathrm{O}(5)\text{-}\mathrm{Cd}(2)\text{-}\mathrm{O}(5)^{\mathrm{i}}$	180	O(5)- $Cd(2)$ - $O(1)$	86.9(2)
O(5)i-Cd(2)-O(1)	93.1(2)	$\mathrm{O}(5)\text{-}\mathrm{Cd}(2)\text{-}\mathrm{O}(1)^{i}$	93.1(2)	$\mathrm{O}(5)^{i}\text{-}\mathrm{Cd}(2)\text{-}\mathrm{O}(1)^{i}$	86.9(2)
$\mathrm{O}(1)\text{-}\mathrm{Cd}(2)\text{-}\mathrm{O}(1)^{\mathrm{i}}$	180	$\mathrm{O}(5)\text{-}\mathrm{Cd}(2)\text{-}\mathrm{O}(3)^{\mathrm{iii}}$	89.50(19)	$\mathrm{O}(5)^{\mathrm{iv}}\text{-}\mathrm{Cd}(2)\text{-}\mathrm{O}(3)^{\mathrm{iii}}$	89.50(19)
O(1)- $Cd(2)$ - $O(3)$ iii	80.86(17)	$O(1)\text{-}Cd(2)\text{-}O(3)^{ii}$	99.14(17)		

Table 1 Selected bond distances (nm) and angles (°)

 $\text{Symmetry codes: $^{\text{i}}-x$, $-y+1$, $-z+1$; $^{\text{ii}}-x+1$, $-y+1$, $-z+1$; $^{\text{iii}}$ $x-1$, y, z; $^{\text{iv}}-x$, $-y+2$, $-z+1$. }$

application of topological approach, that is, reducing multidimensional structures to simple node-and-linker nets. As discussed above, each trinuclear Cd(II) cluster is surrounded by eight organic ligands: six bridging 1,4-chdc and two chelating L. Although each Cd(II) cluster

Symmetric codes: i x, 1-y, 1-z; ii 1-x, 1-y, 1-z; iii x-1, y, z; Displacement ellipsoids at the 20% probability level

Fig.1 View of the trinuclear Cd(II) cluster of complex 1

Fig.2 View of the layer structure of complex 1

is connected by eight bridging ligands, it is virtually linked to four nearest neighbors, because two pairs of *cis*-1,4-chdc²⁻ ligands form two "double-bridges" (Fig. 2). From the topological point of view, this cluster can be defined as a four-connected node. Thus, the overall topology of the two-dimensional framework is best described as a four-connected (4,4) network (Fig.3).

Fig.3 View of the (4,4) network structure of complex 1

2.2 IR analysis

IR spectrum of complex 1 shows the characteristic bands of the carboxylate group at 1 615 cm⁻¹ for the anti-symmetric stretching and 1 542 cm⁻¹ for the symmetric stretching. Peaks at 1 612, 1 580 and 1 465 cm⁻¹ could be attributed to ν (C=C) vibration of aromatic ring. The peak at 1 342 cm⁻¹ is ascribed to the ν (C=N) vibration of L.

References:

- [1] Rosi N L, Kim J, Eddaoudi M, et al. J. Am. Chem. Soc., 2005, 127:1504-1518
- [2] Batten S R. CrystEngCommun, 2001,3:67-73
- [3] Abrahams B F, Batten S R, Grannas M J, et al. Angew. Chem. Int. Ed., 1999,38:1475-1477
- [4] Chen B, Eddaoudi M, Reineke T M, et al. J. Am. Chem. Soc., 2000,122:11559-11560
- [5] Hagrman P J, Hagrman D, Zubieta J. Angew. Chem. Int. Ed., 1999,38:2638-2684
- [6] Ferey G. Chem. Mater., 2001,13:3084-3098
- [7] Kim J, Chen B, Reineke T M. et al. J. Am. Chem. Soc., 2001, 123:8239-8247
- [8] Batten S R, Robson R. Angew. Chem. Int. Ed., 1998,37:1460-1494
- [9] HU Bin(胡 斌), QU Zhi-Rong(瞿志荣). Chinese J. Inorg.

- Chem.(Wuji Huaxue Xuebao), 2007,23(2):283-285
- [10]Zhang X M, Tong M L, Gong M L, et al. Eur. J. Inorg. Chem., 2003,1:138-142
- [11]Wang S N, Bai J F, Li Y Z, et al. CrystEngComm, 2001,9:228-235
- [12]Hong X L, Li Y Z, Hu H M, et al. *Cryst. Growth Des.*, **2006**,**6**: 1211-1226
- [13]Fan J, Sun W Y, Okamura T, et al. New J. Chem., 2002,2: 199-201
- [14]Yang J, Ma J F, Liu Y Y, et al. Cryst. Growth Des., 2009,9: 1894-1911
- [15]Sheldrick G M. SHELXS 97, Program for the Solution of Crystal Structure, University of Göttingen, Germany, 1997.
- [16]Sheldrick G M. SHELXS 97, Program for the Refinement of Crystal Structure, University of Göttingen, Germany, 1997.
- [17]GENG Xiao-Hong (耿晓红), FENG Yun-Long (冯云龙). Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), **2010,26**(2): 360-364