基于 3-甲基-4-对溴苯基-5-(2-吡啶基)-1,2,4-三氮唑的锰配合物的合成和晶体结构

赵 建 ¹ 卢 伟 ¹ 陈 浪 ¹ 沈 旋 ¹ 许 岩 ¹ 朱敦如*,1,2</sup> (¹南京工业大学化学化工学院,材料化学工程国家重点实验室,南京 210009) (²江苏省低维材料化学重点建设实验室,淮安 223300)

摘要:以 3-甲基-4-对溴苯基-5-(2-吡啶基)-1,2,4-三氮唑作为配体(L),合成了 1 个新的锰配合物[MnL₂(NCS)₂],对其进行了红外、电喷雾质谱和单晶结构表征,该配合物属于单斜晶系,空间群 $P2_1/n$,a=1.648 0(2) nm,b=0.907 07(13) nm,c=2.191 9(3) nm, β =97.454(2)°,V=3.248 8(8) nm³,Z=4, R_1 =0.043 9。单晶结构表明,锰离子处于 1 个扭曲的八面体配位环境中,2 个硫氰根离子呈顺式配位,每个配体 L 通过三氮唑上 1 个氮原子和吡啶上 1 个氮原子参与配位。

关键词:锰配合物;晶体结构;三氮唑

中图分类号: 0614.7+11 文献标识码: A 文章编号: 1001-4861(2011)04-0743-04

Synthesis and Crystal Structure of a Manganese Complex with 3-Methyl-4-(p-bromophenyl)-5-(2-pyridyl)-1,2,4-triazole

ZHAO Jian¹ LU Wei¹ CHEN Lang¹ SHEN Xuan¹ XU Yan¹ ZHU Dun-Ru*,1,2

(¹College of Chemistry and Chemical Engineering, State Key Laboratory of Materials-oriented

Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China)

(²Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaian, Jiangsu 223300, China)

Abstract: A new manganese(II) complex, cis-[MnL₂(NCS)₂], (L=3-methyl-4-(p-bromophenyl)-5-(2-pyridyl)-1,2,4-triazole), was synthesized and characterized by X-ray crystallography, FTIR and ESI-MS spectra. The complex crystallizes in monoclinic system with space group $P2_1/n$, a=1.648 0(2), b=0.907 07(13), c=2.191 9(3) nm, β = 97.454(2)°, V=3.248 8(8) nm³, Z=4 with final R=0.043 9. The manganese atom lies in a distorted octahedral environment with two NCS⁻ ions in the cis positions. The ligand L coordinates via one triazole nitrogen and one pyridine nitrogen atom. CCDC: 790351.

Key words: Mn(II) complex; crystal structure; 1,2,4-triazole

0 Introduction

Substituted 1,2,4-triazoles and their complexes have attracted much attention in coordination chemistry because of the interesting structures^[1-2] and specific magnetic properties^[3-6]. Recently, some 4-substituted

3,5-di(2-pyridyl)-1,2,4-triazoles and their metal complexes have been prepared by us and other groups ^[7-12]. However, complexes with asymmetrically 3,4,5-trisubstituted 1,2,4-triazole have been little studied so far^[13]. As a continuation of our investigation of the asymmetrical substituted 1,2,4-triazoles^[14-16], we present here

收稿日期:2010-08-25。收修改稿日期:2010-12-01。

the synthesis and crystal structure of a new manganese (II) complex with 3-methyl-4-(*p*-bromophenyl)-5-(2-pyridyl)-1,2,4-triazole.

1 Experimental

1.1 Materials and measurements

All chemicals used were of analytical grade. Solvents were purified by conventional methods. The ligand L was prepared as reported earlier^[15]. Elemental analyses (C, H, N, S) were carried out with a Thermo Finnigan Flash 1112A elemental analyzer. IR spectrum was recorded on a Nicolet Avatar 380 FTIR instrument with KBr pellets in the range 4 000~400 cm⁻¹. Electrospray ionization mass spectrum (ESI-MS) was recorded with an LCQ ADVANTAGE MAX mass spectrometer, with MeOH on the mobile phase; the flow rate of the mobile phase was 0.2 cm³·min⁻¹. The spray voltage, the capillary voltage, and the capillary temperature were 4 kV, 40 V, and 260 °C, respectively.

1.2 Synthesis of cis-[MnL₂(NCS)₂]

To a solution of KSCN (0.4 mmol) in anhydrous MeOH (3 mL) was added a solution of MnCl₂·4H₂O (0.2 mmol) in MeOH (2 mL). The mixture was stirred for 15 min and filtered. The KCl precipitate was washed with 2 mL of anhydrous MeOH. The methanolic fractions containing Mn(SCN)₂ were collected, and then was

added dropwise to a solution of the L (0.4 mmol) in MeOH (3 mL). A light-yellow microcrystalline product, which formed immediately, was filtered and washed with H₂O, and dried under vacuum to give 0.1 mmol (55%) of the complex. The light-yellow single crystals suitable for X-ray diffraction were obtained by evaporation from an EtOH solution. Elemental analyses calcd. for C₃₀H₂₂Br₂MnN₁₀S₂(%): C 44.96, H 2.77, N 17.48, S 8.00; found (%): C 45.08, H 2.66, N 17.55, S 8.09. IR data $(\nu, \text{ cm}^{-1})$: 3 085 (m); 2 939 (w); 2 063 (s); 2 043(s); 1 600 (s); 1 536 (m); 1 492 (s); 1 482 (s); 1 341 (m); 1 287 (m); 1 070 (m); 992 (m); 838 (m); 794 (m); 633 (m). ESI-MS: m/z =743.92; 652.92; 499.67; 339.17; 317.25.

1.3 Crystal structure determination

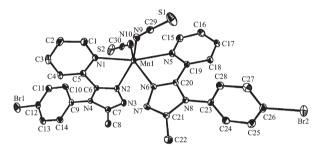
The well-shaped single crystals of cis-[MnL₂(NCS)₂] were selected for X-ray diffraction study. The unit cell parameters and intensity data were collected at 296(2) K on a Bruker SMART APEX CCD diffractometer using a graphite-monochromated Mo $K\alpha$ (λ =0.071 073 nm) radiation. The structure was solved by direct methods and refined on F^2 by full-matrix least squares procedures using SHELXTL software^[17]. All non-hydrogen atoms were anisotropically refined. Crystallographic data are summarized in Table 1.

CCDC: 790351.

Table 1 Crystal data and structure refinement for the complex

Complex	[MnL ₂ (NCS) ₂]	μ / mm ⁻¹	3.034
Empirical formula	$C_{30}H_{22}Br_{2}MnN_{10}S_{2} \\$	F(000)	1 596
Formula weight	801.46	Crystal size / mm	0.30×0.14×0.10
Crystal system	Monoclinic	θ range / (°)	1.46~25.00
Space group	$P2_{1}/n$	Reflections collected	17 300
a / nm	1.648 0(2)	Independent reflections $(R_{ m int})$	5 700 (0.132)
b / nm	0.907 07(13)	Reflections observed ($I>2\sigma(I)$)	3 799
c / nm	2.191 9(3)	Data / restraints / parameters	5700/0/406
β / (°)	97.454(2)	Goodness-of-fit on F^2	0.927
V / nm^3	3.2488(8)	$R / wR (I > 2\sigma(I))$	0.043 9 / 0.094 8
Z	4	R / wR (all data)	0.071 2 / 0.103 9
$D_{\rm c}$ / (g \cdot cm $^{-3}$)	1.639	$\Delta \rho_{\text{max}}, \ \Delta \rho_{\text{min}} \ / \ (\text{e} \cdot \text{nm}^{-3})$	568, -564

2 Results and discussion

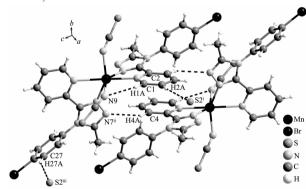

A projection of the structure of cis-[MnL₂(NCS)₂] is presented in Fig.1 together with the atomic labeling

system. The complex crystallizes in the monoclinic space group $P2_1/n$. Relevant interatomic distances and angles are given in Table 2.

The manganese atom is surrounded by four

Table 2 Selected bond distances (min) and bond angles () for the complex							
Mn-N1	0.235 2(3)	Mn-N9	0.213 6(3)	N9-C29	0.114 9(5)		
Mn-N2	0.228 0(3)	Mn-N10	0.213 0(4)	N10-C30	0.115 7(5)		
Mn-N5	0.241 2(3)	Br1-C12	0.190 1(4)				
Mn-N6	0.221 8(3)	Br2-C26	0.189 5(4)				
Mn-N9-C29	143.0(3)	N6-Mn-N5	69.66(11)	S2-C30-N10	178.9(5)		
Mn-N10-C30	138.2(4)	N6-Mn-N2	84.81(11)	S1-C29-N9	177.7(4)		
N9-Mn-N10	113.51(14)	N1-Mn-N5	165.18(11)				
N9-Mn-N6	88.49(12)	N2-Mn-N1	70.53(11)				

Table 2 Selected bond distances (nm) and bond angles (°) for the complex



30% probability level for the thermal ellipsoids, hydrogen atoms are omitted for clarity

Fig.1 Projection of the structure of complex with the atomic labeling system

nitrogen atoms from two L ligands and two nitrogen atoms from two NCS⁻ ions to form a distorted octahedral geometry. Each L ligand coordinates to manganese atom through N atom of the pyridyl ring and N atom of the triazole, which is similar to the coordination modes in the related complexes^[9,18-21]. It is worthwhile to note that two NCS - groups are in a cis arrangement and almost linear (N9-C29-S1, 177.7(4)° and N10-C30-S2, 178.9(5)°). However, the Mn-N-C(S) linkages are bent (Mn-N9-C29, 143.0(3)° and Mn-N10-C30, 138.2(4)°), which are smaller than those found in an analogous cis-NCS-Mn(II) complex (Mn-N6-C21, 163.5(3)° and Mn-N7-C20, 170.9(3)°)[19]. The Mn-N9 and Mn-N10 bond lengths (0.213 6(3), 0.213 0(4) nm) are shorter than the Mn-N1 and Mn-N5 distances (0.235 2 (3), 0.241 2(3) nm). These results are similar to those found in two homologous Mn(II) complexes, trans-[MnL¹₂(NCS)₂]^[18] $[L^1 = 4-(p-\text{methylphenyl})-3, 5-\text{bis(pyridin-2-yl})-1, 2, 4$ triazole] and cis-[MnL²(H₂O)₂(NCS)₂]^[19] [L²=4-(p-methoxyphenyl)-3, 5-bis(pyridin-2-yl)-1, 2, 4-triazole]. The ligand L in complex is non-planar. The triazole ring with N2 atom makes dihedral angles of 15.8(3)° and

72.3(3)° with the N1-containing pyridyl ring and Br1-containing phenyl ring, respectively. While the triazole ring with N6 atom makes dihedral angles of 6.3(3)° and 71.7(3)° with the N5-containing pyridyl ring and Br2-containing phenyl ring, respectively. The crystal structure is further stabilized by weak intermolecular $C-H\cdots N$ and $C-H\cdots S$ hydrogen bonds (Fig.2 and Table 3).

Symmetry codes: ${}^{i}1-x$, -y, -1-z; ${}^{ii}1-x$, 1-y, -1-z; ${}^{iii}1/2+x$, 1/2-y, 1/2+z

Fig.2 Hydrogen bonding interactions in the complex

In the IR spectrum of the complex, there are two bands at 2 063(s) and 2 043(s) cm⁻¹, attributable to the $C \equiv N$ stretching vibrations of two thiocyanate groups, which shows that two NCS⁻ ions are in a *cis* arrangement^[19]. This feature is in agreement with the results of X-ray analysis. A band at 1 600(s) cm⁻¹ can be assigned to the coordinated pyridine ring. In addition, the diagnostic symmetrical stretching frequency of Ar-Br is at 1 070(m) cm⁻¹.

The structure of cis-[MnL₂(NCS)₂] in solution was also studied by electrospray ionization mass spectrometry (ESI-MS)^[22-23]. The base peak at m/z 743.92 is [MnL₂(NCS)]⁺ ion and the peak at m/z 499.67 is [MnL₃]²⁺.

The peaks at m/z 652.92, 339.17 and 317.25 are $[NaL_2]^+$, $[NaL-H]^+$ and $[L]^+$, respectively.

3 Conclusions

A new manganese(II) complex with 3-methyl-4-(p-bromophenyl)-5-(2-pyridyl)-1,2,4-triazole has been synthesized and characterized by elemental analyses, IR, ESI-MS spectra and X-ray crystal structure analysis. The manganese atom is in a distorted octahedral environment and coordinated by two *cis*-oriented thiocyanate anions. Each ligand coordinates via one triazole nitrogen atom and one pyridine nitrogen atom.

References:

- [1] Keij F S, de Graaff R A G, Haasnoot J G, et al. J. Chem. Soc., Dalton Trans., 1984:2093-2097
- [2] van Koningsbruggen P J, Gatteschi D, De Graaff R A G, et al. Inorg. Chem., 1995,34:5175-5182
- [3] Prins R, Birker P J M W L, Haasnoot J G, et al. *Inorg. Chem.*, 1985,24:4128-4133
- [4] Koomen-van Oudenniel W M E, de Graaff R A G, Haasnoot J G, et al. *Inorg. Chem.*, 1989,28:1128-1133
- [5] Klingele M H, Moubaraki B, Murray K S, et al. Chem. Eur. J., 2005,11:6962-6973
- [6] Klingele M H, Boyd P D W, Moubaraki B, et al. Eur. J. Inorg. Chem., 2005.5:910-918
- [7] Klingele M H, Brooker S. Coord. Chem. Rev., 2003,241:119-132
- [8] Kitchen J A, Brooker S. Coord. Chem. Rev., 2008,252:2072-2092

- [9] QI Li(齐丽), ZHU Dun-Ru(朱敦如), XIE Da-Jing(解大景), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2008,24 (6):868-872
- [10]Zhou J, Yang J, Qi L, et al. Transition Met. Chem., 2007,32: 711-715
- [11]Yang J, Bao W W, Ren X M, et al. J. Coord. Chem., 2009,62: 1809-1816
- [12]Matouzenko G S, Bousseksou A, Borshch S A, et al. *Inorg. Chem.*, 2004.43:227-236
- [13]Zhang S P, Liu Z D, Shao S C. Acta Crystallogr., 2006,E62: o1279-o1280
- [14]Xie D J, Lu W, Wang Z X, et al. Acta Crystallogr., 2009,E65: o1177-o1178
- [15]Lu W, Zhu D R, Xu Y, et al. Struct. Chem., 2010,21:237-244
- [16]LU Wei(卢伟), XIE Da-Jing(谢大景), WANG Zuo-Xiang(王作祥), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), **2010,26**(4):717-720
- [17]Sheldrick G M. SHELXTL, Structure Determination Software Programs, Version 5.10, Bruker Analytical X-ray Systems Inc., Wisconsin, USA, 1997.
- [18]ZHU Dun-Ru(朱敦如), WANG Tian-Wei(王天维), ZHONG Sheng-Lai(仲盛来), et al. *Chinese J. Inorg. Chem.* (Wuji Huaxue Xuebao), **2004,20**(5):508-512
- [19]Zhu D R, Xu Y, Mei Y, et al. J. Mol. Struct., 2001,559:119-125
- [20]ZHU Dun-Ru(朱敦如), WANG Zuo-Xiang(王作祥), SONG Jun(宋军), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2005,21(1):128-132
- [21]Zhu D R, Xu Y, Yu Z, et al. Chem. Mater., 2002,14:838-843
- [22] Wilson S R, Yasmin A, Wu Y. J. Org. Chem., 1992,57:6941-6945
- [23] Arakawa R, Matuo T, Ito H, et al. Org. Mass Spectrom., 1994, 29:289-294