铜配合物[$CuL_2(ClO_4)_2$]的合成、晶体结构及热稳定性 (L=3-对溴苯基-4-对甲苯基-5-(2-吡啶基)-1,2,4-三氮唑)

陈 浪 程慧敏 江静静 沈 旋 朱敦如* (南京工业大学化学化工学院,材料化学工程国家重点实验室,南京 210009)

摘要:以 3-对溴苯基-4-对甲苯基-5-(2-吡啶基)-1,2,4-三氮唑(L)作为配体,合成了 1 个铜配合物 trans-[CuL₂(ClO₄)₂],对其进行了 红外、电喷雾质谱、热重分析和单晶结构表征,该配合物属于三斜晶系,空间群 $P\overline{1}$,a=0.829 29(15) nm,b=0.854 48(16) nm,c=1.5027(3) nm, α =83.517(2)°, β =89.200(2)°, γ =73.064(2)°,V=1.0119(3) nm³,Z=1,R₁=0.0412。单晶结构表明,铜离子处于 1 个扭曲的八面体配位环境中,2 个高氯酸根离子呈反式配位,每个配体 L 通过三氮唑上的 1 个氮原子和吡啶氮原子参与配位。热重分析表明该配合物在 310 ℃开始发生分解。

关键词:铜配合物:晶体结构:三氮唑

中图分类号: 0614.121 文献标识码: A 文章编号: 1001-4861(2012)02-0381-05

Synthesis, Crystal Structure and Thermal Stability of [CuL₂(ClO₄)₂] (L=3-(*p*-Bromophenyl)-4-(*p*-methylphenyl)-5-(2-pyridyl)-1,2,4-triazole)

CHEN Lang CHENG Hui-Min JIANG Jing-Jing SHEN Xuan ZHU Dun-Ru*

(College of Chemistry and Chemical Engineering, State Key Laboratory of Materials-oriented

Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China)

Abstract: A copper(II) complex, trans-[CuL₂(ClO₄)₂], (L=3-(p-bromophenyl)-4-(p-methylphenyl)-5-(2-pyridyl)-1,2,4-triazole), was synthesized and characterized by FTIR, ESI-MS, TGA/DSC and X-ray crystallography. The complex crystallizes in triclinic system with space group $P\overline{1}$, a=0.829 29(15) nm, b =0.854 48(16) nm, c=1.502 7(3) nm, α =83.517(2)°, β =89.200(2)°, γ =73.064(2)°, V=1.011 9(3) nm³, Z=1 and final R=0.041 2. The copper atom lies in a distorted octahedral environment with two ClO₄⁻ ions in the trans positions. The ligand L coordinates via one triazole nitrogen and one pyridine nitrogen atom. The TG analysis shows that the complex is stable below 310 °C. CCDC: 843042.

Key words: Cu(II) complex; crystal structure; 1,2,4-triazole

0 Introduction

Over the past two decades, triaryltriazole ligands have gained considerable attention due to their versatile coordination chemistry^[1] and the intriguing magnetic properties of their resulting transition metal

complexes^[2-3]. Specially, some iron(II) complexes with triaryltriazole ligands show interesting spin-crossover properties which can be applied for molecular electronics, as information storage and switching materials^[4-5]. Recently, some 4-arylsubstituted 3,5-di(2-pyridyl)-1,2,4-triazoles and their metal complexes have

收稿日期:2011-09-08。收修改稿日期:2011-10-19。

国家自然科学基金(No.20771059,21171093)和江苏省自然科学基金(No.BK2008371)资助项目。

^{*}通讯联系人。E-mail:zhudr@njut.edu.cn;会员登记号:S060015982P。

been prepared by us and other groups^[6-12]. However, complexes with asymmetrically 3,4,5-triarylsubstituted 1,2,4-triazole have been little studied so far^[13]. As a continuation of our investigation of the asymmetrical substituted 1,2,4-triazoles^[14-19], we present here the synthesis, crystal structure, spectral characterization and thermal stability of a copper(II) complex with a new asymmetrical 3,4,5-trisubstituted triaryltriazole, 3-(p-bromophenyl)-4-(p-methylphenyl)-5-(2-pyridyl)-1, 2,4-triazole.

1 Experimental

1.1 Materials and measurements

All chemicals used were of analytical grade. Solvents were purified by conventional methods. The ligand L was prepared according to a similar literature method [17]. Elemental analyses (C, H, N) were carried out with a Thermo Finnigan Flash 1112A elemental analyzer. IR spectrum was recorded on a Nicolet Avatar 380 FTIR instrument with KBr pellets in the range of 4 000~400 cm⁻¹. Electrospray ionization mass spectrum (ESI-MS) was recorded with an LCQ ADVANTAGE MAX mass spectrometer, with MeOH as the mobile phase; the flow rate of the mobile phase was 0.2 mL. min⁻¹. The spray voltage, the capillary voltage, and the capillary temperature were 4 kV, 40V, and 260 °C, respectively. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed with a simultaneous NETZSCH STA 449C thermal analyzer under flowing nitrogen from 35 to 400 °C at a heating rate of 5 °C ⋅ min⁻¹.

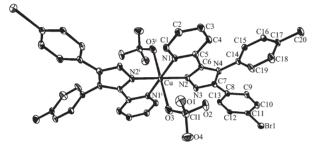
1.2 Synthesis of *trans*-[CuL₂(ClO₄)₂]

A solution of $\text{Cu(NO_3)}_2 \cdot 3\text{H}_2\text{O}$ (0.15 mmol) in EtOH (2 mL) was added to a solution of L (0.3 mmol) in anhydrous EtOH (10 mL). The mixture was stirred for 15 min and then added a solution of NaClO₄ (0.3 mmol) in EtOH (3 mL). After refluxed for 6 h, a resulting light-blue product was filtered and washed with H₂O, and dried under vacuum to give 0.118 mmol (78.6%) of the complex. The light-blue single crystals suitable for X-ray diffraction were obtained by evaporation from an EtOH solution. Elemental analyses calcd. for C₄₀H₃₀Br₂ Cl₂CuN₈O₈(%): C 45.98, H 2.89, N 10.72; found(%): C 45.89, H 2.97, N 10.87. IR data (ν , cm⁻¹): 3 083 (w); 2 924 (w); 1 595 (m); 1 511 (s); 1 464 (s); 1 304 (m); 1 097 (s); 1 056 (m); 929 (w); 832 (m); 753 (m); 733 (m); 623 (s). ESI-MS: m/z=945.52; 618.67; 423.04.

1.3 Crystal structure determination

The well-shaped single crystals of trans-[CuL₂ (ClO₄)₂] were selected for X-ray diffraction study. The unit cell parameters and intensity data were collected at 173(2) K on a Bruker SMART APEX CCD diffractometer using a graphite-monochromated Mo $K\alpha$ (λ =0.071 073 nm) radiation. The structure was solved by direct methods and refined on F^2 by full-matrix least squares procedures using SHELXTL software ^[20]. All non-hydrogen atoms were anisotropically refined. Crystallographic data are summarized in Table 1.

CCDC: 843042.


Table 1 Crystal data and structure refinement for the complex

	<u>-</u>		
Complex	[CuL ₂ (ClO ₄) ₂]	D _c / (g⋅cm ⁻³)	1.715
Empirical formula	$C_{40}H_{30}Br_{2}Cl_{2}CuN_{8}O_{8} \\$	μ / mm ⁻¹	2.711
Formula weight	1 044.98	F(000)	523
Crystal system	Triclinic	Crystal size / mm	0.28×0.16×0.10
Space group	$P\overline{1}$	θ range / (°)	1.36~25.00
a / nm	0.829 29(15)	Reflections collected	7 133
<i>b</i> / nm	0.854 48(16)	Independent reflections (R_{int})	3 508 (0.035)
c / nm	1.502 7(3)	Reflections observed ($I > 2\sigma(I)$)	2 588
α / (°)	83.517(2)	Data / restraints / parameters	3508 / 0 / 277
β / (°)	89.200(2)	Goodness-of-fit on F^2	1.034
γ / (°)	73.064(2)	R/wR $(I>2\sigma(I))$	0.041 2/0.097 0
V / nm^3	1.011 9(3)	R/wR (all data)	0.063 1/0.116 3
Z	1	Max., Min. Δρ /(e⋅nm ⁻³)	585, -516

2 Results and discussion

2.1 Crystal structure

A projection of the structure of trans-[CuL₂(ClO₄)₂] is presented in Fig.1 together with the atomic labeling system. The complex crystallizes in the triclinic space group $P\bar{1}$ and there is an inversion centre at the Cu(II) atom. The crystal structure consists of a Cu(II) cation, two L ligands and two perchlorate anions, which is agreement with the elemental analysis result. Relevant interatomic distances and angles are given in Table 2.

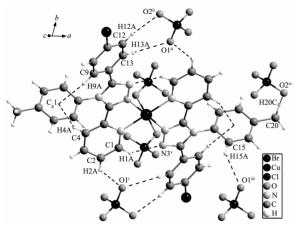
Hydrogen atoms are omitted for clarity; Symmetry code: i 1-x, 1- $_{v}$ -z

Fig.1 Projection of structure of the complex with 30% thermal ellipsoids probability

The Cu(II) atom is coordinated by four nitrogen atoms from two L ligands in the equatorial plane and

two oxygen atoms from two perchlorate anions in the axial position to form a distorted octahedron. Each L ligand coordinates to Cu(II) atom through N atom of the pyridyl ring and one N atom of the triazole, which is similar to the coordination modes in a related Cu(II) complex^[18]. The Cu-O distance is 0.243 2(3) nm, showing the involvement of two ClO₄ ions in the coordination, which is similar to that found in a homologous Cu(II) complex, $[CuL'_{2}(ClO_{4})_{2}]^{[21]}$ (L'=4-(p-methylphenyl)-3,5di(2-pyridyl)-1,2,4-triazole). The Cu-N bond lengths are within the normal ranges observed for an octahedral Cu(II) complex^[18]. However, the Cu-N bond to the triazole nitrogen is 0.006 1 nm shorter than that to the pyridyl nitrogen. The same feature has been observed in the similar Cu(II) complexes^[15,18,21]. The ligand L in the complex is non-planar. The triazole ring makes dihedral angles of $12.4(2)^{\circ}$, $19.2(2)^{\circ}$ and $77.5(2)^{\circ}$ with the pyridyl ring, the p-bromophenyl ring and pmethylphenyl ring, respectively. The crystal structure is further stabilized by weak intermolecular C-H···N, C-H...O hydrogen bonds and C-H...C₀1 interactions (Fig. 2 and Table 3, C_g1 is the centroid of the *p*-methylphenyl ring).

Table 2 Selected bond distances (nm) and bond angles (°) for the complex


 Cu-N1	0.204 4(3)	N2-N3	0.137 0(5)	C17-C20	0.151 4(6)
Cu-N2	0.198 3(3)	Br1-C11	0.189 4(4)		
Cu-O3	0.243 2(3)	N4-C14	0.144 5(5)		
O3-Cu-N1	93.66(13)	N1-Cu-O3i	86.34(13)	N2-Cu-N2i	180.00
O3-Cu-N2	90.44(13)	O3-Cu-O3i	180.00		
N1-Cu-N2	80.30(13)	N1-Cu-N1i	180.00		

Symmetry code: i 1-x, 1-y, -z.

Table 3 Hydrogen bonding interactions in the complex

D–H···A	d(D-H) / nm	$d(\mathbf{H}\cdots\mathbf{A})$ / nm	$d(\mathrm{D}\cdots\mathrm{A})$ / nm	∠DHA / (°)
C2-H2A···O1i	0.095 0	0.249 5	0.324 3	135.56
C13-H13AO1 ⁱⁱ	0.095 0	0.260 9	0.340 4	141.44
C15-H15A···O1 ⁱⁱⁱ	0.095 0	0.263 8	0.343 1	141.22
C12-H12A····O2 ⁱⁱ	0.095 0	0.245 1	0.328 6	146.58
$\mathrm{C20H20C\cdots O2^{iv}}$	0.098 0	0.270 6	0.340 2	128.35
C1-H1A···N3v	0.095 1	0.233 9	0.314 9	142.77
C4-H4A···Cg1	0.095 0	0.289 2	0.372 9	147.52
C9-H9A…Cg1	0.095 0	0.282 0	0.333 9	149.35

Symmetry codes: i 1-x, -y, -z; ii x, 1+y, z; ii x-1, 1+y, z; iv x-1, y, z; v -x, 1-y, -z.

Symmetry codes: i 1-x, 1-y, -z; ii x, 1+y, z; iii x-1, 1+y, z; iv x-1, y, z; v -x, 1-y, -z

Fig.2 Hydrogen bonding interactions in the complex

2.2 Spectral characterization

In the IR spectrum of the complex, there are three bands at 1 097 (s), 929 (w) and 624 cm⁻¹ (s), attributable to the IR-allowed ν mode, IR-forbidden ν mode and the nondegenerate ClO₃ symmetrical bending frequency of the ClO₄⁻ anions, respectively^[15]. A band at 1 595 cm⁻¹ (m) can be assigned to the coordinated pyridine ring. In addition, the asymmetrical stretching frequency of Ph-Br is at 1 056 cm⁻¹ (m)^[14]. These features are in agreement with the results of X-ray analysis.

The structure of *trans*-[CuL₂(ClO₄)₂] in solution was also studied by electrospray ionization mass spectrometry (ESI-MS)^[22-23]. Fig.3 displays a positive ion ESI mass spectrum of the complex in the methanol solution. Three main peaks were observed. The base peak at m/z 945.52 is [CuL₂(ClO₄)]⁺ ion. The peaks at m/z 618.67,

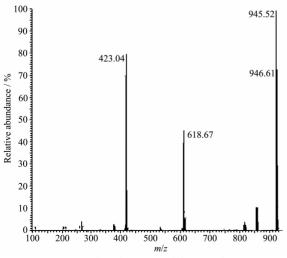


Fig.3 ESI-MS spectra of the complex

423.04 are $[CuL_3]^{2+}$ and $[CuL_2]^{2+}$ ion, respectively.

2.3 Thermal stability

Due to lack of any guest molecules in trans-[CuL₂ (ClO₄)₂], TGA (Fig.4) shows a high thermal stability of the complex. Practically no weight loss was observed up to 310 °C. An abrupt weight loss is only observed above 310 °C as a result of the explosion of the complex or rapid combustion of the ligands because of the existence of ClO₄⁻ anions, associated with an exothermic peak at 327 °C in the DSC curve of trans-[CuL₂(ClO₄)₂]. The remaining weight of 7.28% after heating to 350 °C is due to the final residue of CuO, in agreement with the calculated value of 7.66%. The thermal decomposition feature of the complex is also in good agreement with its crystal structure.

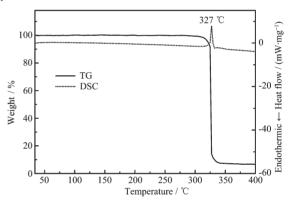


Fig.4 TGA/DSC curves of the complex

3 Conclusions

A new Cu(II) complex with 3-(*p*-bromophenyl)-4-(*p*-methylphenyl)-5-(2-pyridyl)-1,2,4-triazole has been synthesized and characterized by elemental analyses, IR, TGA/DSC, ESI-MS spectra and X-ray crystal structure analysis. The copper atom is in a distorted octahedral environment and coordinated by two transoriented ClO₄⁻ anions. Each ligand coordinates via one triazole nitrogen atom and pyridine nitrogen atom. The TG analysis shows that the complex is stable below 310 °C.

References:

- [1] Klingele M H, Brooker S. Coord. Chem. Rev., 2003,241:119-132
- [2] Kitchen J A, Jameson G N L, Milway V A, et al. Dalton Trans.,

2010.39:7637-7639

- [3] Kitchen J A, Noble A, Brand C D, et al. *Inorg. Chem.*, 2008, 47:9450-9458
- [4] Zhu D, Xu Y, Yu Z, et al. Chem. Mater., 2002,14:838-843
- [5] Kitchen J A, Brooker S. Coord. Chem. Rev., 2008,252:2072-2092
- [6] Klingele M H, Boyd P D W, Moubaraki B, et al. Eur. J. Inorg. Chem., 2006:573-589
- [7] Chen L, Zhao J, Shen G P, et al. J. Coord. Chem., 2011,64: 3980-3991
- [8] QI Li(齐丽), ZHU Dun-Ru(朱敦如), XIE Da-Jing(解大景), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2008,24 (6):868-872
- [9] Zhou J, Yang J, Qi L, et al. Transition Met. Chem., 2007,32: 711-715
- [10]Yang J, Bao W W, Ren X M, et al. J. Coord. Chem., 2009,62: 1809-1816
- [11]Kitchen J A, White N G, Boyd M, et al. *Inorg. Chem.*, 2009, 48:6670-6679
- [12]Zhang S P, Liu Z D, Shao S C. Acta Crystallogr., 2006,E62: o1279-o1280
- [13]SHEN Guo-Ping(沈国平), ZHAO Jian(赵建), CHEN Lang(陈

- 浪), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), **2012.28**(1):159-163
- [14]ZHAO Jian(赵建), LU Wei(卢伟), CHEN Lang(陈浪), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2011,27(4): 743-746
- [15]Lu W, Zhu D R, Xu Y, et al. Struct. Chem., 2010,21:237-244 [16]LU Wei(卢伟), XIE Da-Jing(谢大景), WANG Zuo-Xiang(王作祥), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(4):717-720
- [17]Zhao J, Cheng H M, Shen G P, et al. J. Coord. Chem., 2011, 64:941-952
- [18] Shen G P, Zhao J, Jiang J J, et al. J. Mol. Struct., 2011,1002: 159-166
- [19]Zhao J, Shen G P, Zhang Y, et al. J. Heterocycl. Chem., 2011, DOI 10.1002/jhet.949
- [20]Sheldrick G.M. Acta Crystallogr., 2008, A64:112-122
- [21]Zhang S P, Liu Z D, Ma J L, et al. Acta Crystallogr., 2005, E61:m423-m424
- [22] Wilson S R, Yasmin A, Wu Y. J. Org. Chem., 1992,57:6941-6945
- [23] Arakawa R, Matuo T, Ito H, et al. Org. Mass Spectrom., 1994, 29:289-294