La-H 化合物对 LaMg2Ni 合金中 Mg2Ni 相吸氢过程的影响

裴立超^{1,2} 韩树民*,1,2 朱惜林² 刘宝忠¹ 赵 鑫² 扈 琳² (¹ 燕山大学亚稳材料制备技术与科学国家重点实验室,秦皇岛 066004) (² 燕山大学环境与化学工程学院,秦皇岛 066004)

摘要:采用感应熔炼技术在 Ar 气氛保护下制备得到 $LaMg_2Ni$ 与 Mg_2Ni 合金。X 射线衍射(XRD)图表明 $LaMg_2Ni$ 合金在吸氢过程中分解为 LaH_3 相和 Mg_2NiH_4 相,放氢过程中 LaH_3 相转化为 La_3H_7 相。与 Mg_2Ni 合金相比, $LaMg_2Ni$ 合金显示出优良的吸氢动力学性能,这是由于镧氢化合物的存在及其在吸氢过程中所发生的相转变所造成的。 $LaMg_2Ni$ 合金 280 s 内吸氢即可达到最大储氢量的 90%以上,而 Mg_2Ni 合金则需要 1200 s 才能达到,且在相同温度下 $LaMg_2Ni$ 合金的吸氢反应速率常数大于 Mg_2Ni 合金速率常数。镧氢化合物不仅有利于改善动力学性能,而且可以提高热力学性能。 $LaMg_2Ni$ 合金中的 Mg_2Ni 相氢化反应焓与熵分别为-53.02 kJ·mol $^{-1}$ 和 84.96 J·K $^{-1}$ ·mol $^{-1}$ (H_2),这一数值小于单相 Mg_2Ni 氢化反应焓与熵(-64.50 kJ·mol $^{-1}$, -123.10 J·K $^{-1}$ ·mol $^{-1}$ (H_2))。压力-4组成-温度 (P-C-T) 测试结果表明在 603 K 至 523 K 温度范围内, $LaMg_2Ni$ 合金储氢容量保持稳定为 1.95wt%左右,然而 Mg_2Ni 合金的储氢容量则由 4.09wt%衰减为 3.13wt%, Mg_2Ni 合金的储氢容量在 523K 低温下仅为 603 K 时的 76.5%,表明镧氢化合物能够改善 Mg_2Ni 合金低温下的吸放氢性能。

关键词:储氢合金;相转变;镧氢化合物;吸氢动力学

中图分类号: TG139+7 文献标识码: A 文章编号: 1001-4861(2012)07-1489-06

Effect of La hydride Compound on Hydriding Process of Mg2Ni Phase in LaMg2Ni Alloy

PEI Li-Chao^{1,2} HAN Shu-Min^{*,1,2} ZHU Xi-Lin² LIU Bao-Zhong¹ ZHAO Xin² HU Lin² (State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China) (College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China)

Abstract: LaMg₂Ni and Mg₂Ni alloys were prepared by inductive melting under Ar atmosphere. X-ray diffraction (XRD) shows that during hydrogenation, LaMg₂Ni alloy decomposes to LaH₃ phase and Mg₂NiH₄ phase, in dehydriding process this alloy releases H₂ and LaH₃ phase changes to La₃H₇ phase. Compared with Mg₂Ni alloy, on account of the existence of La hydride compound and phase transition from La₃H₇ phase to LaH₃ phase in hydriding process, LaMg₂Ni alloy shows better hydriding kinetics. It is within 280 s for LaMg₂Ni alloy to reach 90% of the maximum hydrogen absorption capacity, while it needs 1 200 s for pristine Mg₂Ni alloy to do so. The rate constant of LaMg₂Ni alloy is larger than that of Mg₂Ni alloy at the same temperature. La hydride compound is beneficial not only to the enhancement of hydriding kinetics but also to the improvement of the thermodynamic properties. The enthalpy and entropy for the hydriding Mg₂Ni in the LaMg₂Ni alloy are -53.02 kJ·mol⁻¹, 84.96 J·K⁻¹·mol⁻¹ (H₂), respectively. Mg₂NiH₄ in LaMg₂Ni alloy is less stable than pristine Mg₂Ni alloy (-64.50 kJ·mol⁻¹ and -123.10 J·K⁻¹·mol⁻¹ (H₂)). Pressure-Composition- Temperature (*P-C-T*) measurement results show that the hydrogen storage capacity of LaMg₂Ni alloy is about 1.95wt% and is kept stable from 603 K to 523 K, while the hydrogen storage capacity of pristine Mg₂Ni alloy declines distinctly form 4.09wt% to 3.13wt% with the reduction

收稿日期:2011-10-07。收修改稿日期:2012-03-29。

国家自然科学基金(No.50971112, 51001043);国家 863 计划课题 No.2007AA05Z117;河北省自然科学基金(No.E201001170)资助项目。

^{*}通讯联系人。E-mail: hanshm@ysu.edu.cn Tel.: +86-335-8074648; 会员登记号: E491102281M。

of temperature from 603 K to 523 K. The hydrogen storage capacity of pristine Mg₂Ni alloy at lower temperature (523 K) is only 76.5% when compared to that at 603 K, suggesting that La hydride compound could improve the hydriding/dehydriding properties of Mg₂Ni alloy at low temperature.

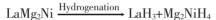
Key words: hydrogen storage alloy; phase transition; La hydride compound; hydriding kinetic

A great deal of research on hydrogen as an alternative energy source has been carried out during the past decades, many hydrogen storage materials have been discovered for storing and transporting hydrogen safely and economically. Among these materials, Mg has been considered as a promising candidate because of its high hydrogen capacity (up to 7.60wt%), reversibility and low cost [1]. However, its poor kinetic properties during hydrogenation/dehydrogenation (H/D) process and the normally required high dehydrogenation temperature (>573 K), has limited its industrial application.

Until now, there are several approaches to improve the properties of Mg-based alloy. One of the most possible solutions is alloying with transition metal (Ni, Cu and Ti, etc.), such as Mg₂Ni^[2-3] alloy, to improve kinetic performances of pure magnesium. A further improvement of absorption/desorption conditions may be obtained by alloying with rare earths, the rare earth hydride corresponding to rare earth element forms in the hydrogen adsorption process, and the rare earth hydride can effectively catalyze hydriding/ dehydriding kinetics [4-5]. Other reported methods for the improvement of the Mg based materials hydrogen storage ability include ball milling with catalyst [6-7], surface modification with acid [8] and some new preparing methods for hydrogen storage alloys such as Hydriding Combustion Synthesis (HCS) [9], Spark Plasma Sintering^[10] etc.

Recently, many researches^[11-12] have focused on LaMg₂Ni compound, an amorphous phase of LaMg₂Ni could be obtained by means of melt spinning technique, hydrogenation at 443 K leads to the formation of LaMg₂NiH₇; at higher temperatures (523 K) LaH_x phase and Mg₂NiH₄ phase were produced, but the effect of La hydride compound was not mentioned

in LaMg₂Ni alloy ^[13]. Ouyang et al. ^[14] found that the actual hydrogen absorption phase was Mg_2Ni phase for the LaMg₂Ni alloy prepared by inductive melting and LaH₂₄₆ phase existed in the whole process, the LaH₂₄₆ phase was helpful to improve hydriding kinetics of LaMg₂Ni alloy. However, it did not explain in detail how the La hydride compound acted as a catalyst in LaMg₂Ni alloy. Herein we report the hydrogen storage ability of LaMg₂Ni alloy and its phase transition during the hydriding/dehydriding (H/D) process, in particular, effect of La hydride compound on hydriding process of Mg_2Ni phase in LaMg₂Ni alloy.


1 Experimental

LaMg₂Ni and Mg₂Ni ingots were prepared by inductive melting of high-purity La, Mg and Ni (purity more than 99.9%) in a magnesia crucible under argon atmosphere. A slight excess of Mg was used to compensate for evaporative Mg loss during the melting procedure^[15]. Then the ingots were annealed at 738 K for 6 h. The composition of these alloys was analyzed by Inductive Coupled Plasma Emission Spectrometer (ICP). The phase structures of the as-cast alloy and hydrogenated alloy were measured on a D/max-2500/ PC X-ray diffractometer with Cu $K\alpha$ radiation (λ = 0.154 06 nm). The X-ray intensity was measured at 40 kV, 100 mA over a diffraction angle from 10° to 80° with a scan rate of 2°·min⁻¹. The cell unite volume was calculated by Jade-5 software. The mechanical ball milling experiment was carried out by Pulverisette 6 planetary mono mill made in Germany; ball vs. sample ratio was 15:1. The hydriding/dehydriding behavior was measured by Pressure-Composition-Temperature (P-C-T) characteristic measurement equi-(made by Suzuki Shokan, Japan). The measurement conditions were set as: delay time 300 s,

maximum pressure 3.0 MPa. The specimen weight for P-C-T measurement is ~ 2.0 g. The hydriding kinetic of the as-cast alloy was also tested by P-C-T characte-ristic measurement equipment under the initial hydrogen pressure of 3.0 MPa. The activation conditions could be illustrated as follows, the LaMg₂Ni and Mg₂Ni alloys hydrogenated under 3.0 MPa hydrogen pressure for 2 h, and the dehydriding process was in vacuum for 2 h, the temperature of activation was 623 K.

2 Results and discussion

Fig.1 shows the XRD patterns of LaMg₂Ni alloy after hydriding/dehydriding process. From pattern (a), it reveals that LaMg₂Ni alloy transforms to LaH₃ phase and Mg₂NiH₄ phase after hydriding process at 623 K, while there is no LaMg₂NiH₇ phase peak, which is consistent with the results of references ^[16-17]. The reaction of LaMg₂Ni phase can be summarized as follows:

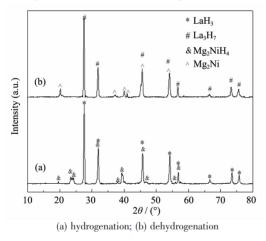


Fig.1 XRD patterns of LaMg₂Ni alloy at 623 K

To understand phase transition during the hydriding/dehydriding (H/D) process more clearly, XRD pattern of LaMg₂Ni alloy after dehydriding process at 623 K was collected and is shown in Fig.1 (pattern (b)). Apparently, after dehydriding process, LaH₃ phase transforms to La₃H₇ phase, while Mg₂Ni phase exists, the reaction can be written as follows:

$$LaH_3 + Mg_2NiH_4 \xrightarrow{Dehydrogenation} La_3H_7 + Mg_2Ni + H_2$$
 This phase transition during hydriding/

dehydridng process was not found before, we presume that besides the existence of La hydride compound, this phase transition plays an important role in improving hydriding/dehydridng properties of LaMg₂Ni alloy.

For improving hydriding/dehydriding kinetics of LaMg₂Ni and Mg₂Ni alloys, activation is made at 623 K and hydrogen absorption curves are shown in Fig.2 and Fig.3, the initial hydrogen pressure is 3.0 MPa. The as-cast Mg₂Ni alloy can not be activated at 623 K, so activation curves of Mg2Ni alloy are measured after ball-milling for 2 h. It is clearly seen from Fig.2 that at the first activation cycle, the uptake time for 90% hydrogen content of the maximum hydrogen storage capacity of LaMg₂Ni allov is 1 560 s, for Mg₂Ni alloy is 1510 s. For the second activation cycle, from Fig.3, the uptake time for 90% hydrogen content of the maximum hydrogen storage capacity of Mg2Ni alloy is 1200 s, while for LaMg₂Ni alloy, it only needs 280 s. According to XRD analysis, in LaMg₂Ni alloy, it decomposes to La hydride compound and Mg2NiH4 during hydriding process, the existence of La hydride compound accelerates hydrogen absorption/desorption rate, because it increases reactive surface area greatly and decreases diffusion length of hydrogen [4,18]. Moreover La hydride compound undergoes phase transition from La₃H₇ phase to LaH₃ phase during hydriding process, the unit cell volume of La₃H₇ phase is 0.357 4 nm³ with tetragonal La₃H₇ type structure and that of LaH₃ phase is 0.176 1 nm³ with cubic

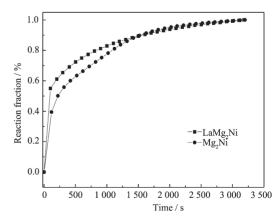


Fig.2 First cycle activation curves of LaMg $_2$ Ni and Mg $_2$ Ni alloys at 623 K

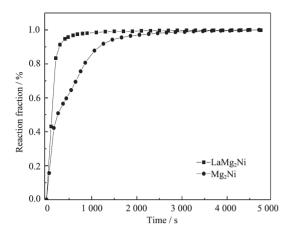


Fig.3 Second cycle activation curves of LaMg₂Ni and Mg₂Ni alloys at 623 K

CeH₃ type structure. The unite cell volume of La₃H₇ is about two times of LaH₃, although the whole volume of La hydride compound does not change during hydriding process, lattice interface of LaMg₂Ni alloy becomes larger than before, so we believe that the co-catalysis of existence of La hydride compound and this phase transition is beneficial to improve hydriding kinetics of LaMg₂Ni alloy.

The hydrogen absorption process of LaMg₂Ni and Mg₂Ni alloys can be best fitted to Eq. (1) (Jander rate equation)

$$g(\alpha) = [1 - (1 - \alpha)^{1/3}]^2 = kt$$
 Eq.(1)

The Eq.(1) is rate expression of Jander Diffusion Model (JDM), where α is the reacted fraction vs. time t, k is the rate constant.

The hydrogen absorption process can be described by three-dimensional diffusion mechanism, and the temperature-dependent rate constants (k) are obtained from the slope of each of the straight lines obtained from Fig.4 and Fig.5.

The rate constants of LaMg₂Ni and Mg₂Ni alloys at different temperatures are shown in Table 1. The k

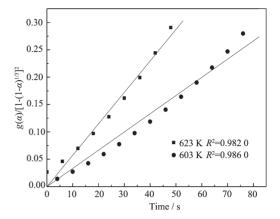


Fig.4 $g(\alpha)$ vs. time for LaMg₂Ni at different temperature

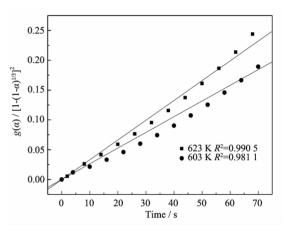


Fig. 5 $g(\alpha)$ vs. time for Mg₂Ni at different temperature

value of LaMg₂Ni alloy is larger than that of Mg₂Ni alloy at the same temperature, which indicates that LaMg₂Ni alloy shows better hydriding kinetics than Mg₂Ni alloy. This result is in good agreement with the above analysis about activation for these two alloys.

Hydrogen storage performance of LaMg₂Ni and Mg₂Ni alloys are evaluated by measuring *P-C-T* at different temperatures. Fig.6 and Fig.7 show the *P-C-T* curves of the two alloys measured at 603 K, 573 K and 523 K. It is worth noting that this set of data was collected right after the activation H/D cycle at 623 K and tested in order of the reduction of temperature. As

Table 1 Rate constants of LaMg₂Ni and Mg₂Ni alloys at different temperature

Sample	Temperature / K	k / s ⁻¹
LaMg ₂ Ni	623 K	0.005 74
	603 K	0.003 33
${ m Mg_2Ni}$	623 K	0.003 32
	603K	0.00263

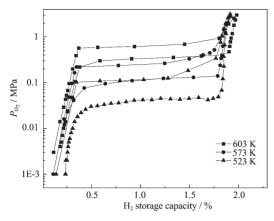


Fig.6 P-C-T curves of LaMg₂Ni alloy at different temperatures

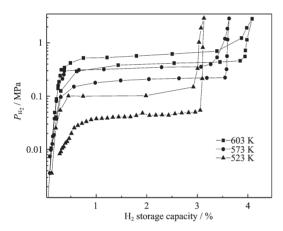


Fig.7 P-C-T curves of Mg₂Ni alloy at different temperatures

shown in Fig.6, hydrogen storage capacity of LaMg₂Ni alloy is 1.98wt% (603 K), 1.92wt% (573 K) and 1.91wt% (523 K), respectively. Its hydrogen storage capacity keeps stably with the temperature decreases from 603 K to 523 K. It is clearly seen from Fig.7 that hydrogen storage capacity of Mg₂Ni alloy is 4.09wt% (603 K), 3.63wt% (573 K) and 3.13wt% (523 K), with the reduction of temperature, hydrogen storage capacity of Mg₂Ni alloy declines distinctly. The relative hydrogen storage capacity of LaMg₂Ni and Mg₂Ni alloys vs. temperature is shown in Fig.8. The relative hydrogen storage capacity is defined and calculated by the following equation:

$$S_{\rm T} = \frac{C_{\rm T}}{C_{603 \, \rm K}} \times 100\%$$
 Eq.(2)

Where S_{T} is the relative hydrogen storage capacity at T temperature, C_{T} is the hydrogen storage

capacity at T temperature and $C_{603~\rm K}$ is the hydrogen storage capacity at 603 K.

From Fig.8, it can be seen that the $S_{523 \text{ K}}$ of LaMg₂Ni alloy is 96.4%, while that for Mg₂Ni alloy is 76.6%. The hydrogenation plateau of LaMg₂Ni alloy is higher than Mg₂Ni alloy at the same temperature, hydrogenation plateau of pristine Mg₂Ni is 0.56 MPa while that of LaMg₂Ni is 0.74 MPa at 603 K. According to the XRD result of LaMg₂Ni alloy, after H/D process, LaMg₂Ni transforms to La hydride compound and Mg₂Ni, compare with pristine Mg₂Ni alloy, *P-C-T* curves suggest that the La hydride compound is helpful to the improvement of the hydrogen storage property for the Mg₂Ni phase in the LaMg₂Ni alloy at low temperature.

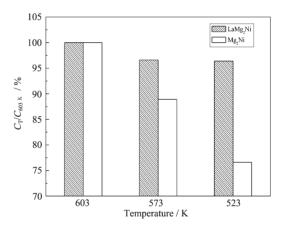


Fig.8 Relative hydrogen storage capacity of $LaMg_2Ni$ and Mg_2Ni alloys vs. temperature

In order to study the thermodynamic property of LaMg₂Ni alloy, *P-C-T* curves of LaMg₂Ni alloy are plotted after the measurement of H/D process at different temperatures, the plateau pressure and temperature are plotted according to the Van't Hoff equation (Eq. (3)). The Van't Hoff plot for the hydrogenated LaMg₂Ni alloy is shown in Fig.9. The enthalpy and entropy for the hydriding Mg₂Ni in the LaMg₂Ni alloy are calculated to be −53.02 kJ·mol⁻¹, −84.96 J·K⁻¹·mol⁻¹ (H₂). Its hydride is less stable than pristine Mg₂Ni alloy (−64.50 kJ·mol⁻¹ and −123.10 J·K⁻¹·mol⁻¹ (H₂), which shows that La hydride compound is beneficial to reducing the enthalpy and entropy for the hydriding Mg₂Ni in the LaMg₂Ni alloy. K[©] is the equi-

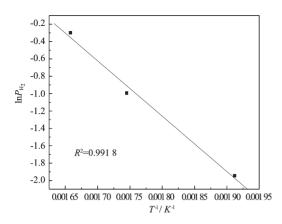


Fig.9 Vant Hoff plot for the hydrogenated LaMg₂Ni alloy librium constant, while K^{\ominus} =1/ $P_{\rm H_2}$ in hydriding process.

$$\ln K^{\odot} = -\frac{\Delta H}{RT} + \frac{\Delta S}{R}$$
 Eq.(3)

References:

- [1] Zhang Y H, Qi Y, Guo S H, et al. J. Rare Earth, 2011,29(1): 87-93
- [2] Cheng S L, Chen Y Y, Lee S W, et al. Thin Solid Films, 2009.517:4745-4748
- [3] Ebrahimi-Purkani A, Kashani-Bozorg S F. J. Alloys Compd., 2008,456:211-215
- [4] Ouyang L Z, Yang X S, Dong H W, et al. Scripta Mater.,

2009.61:339-342

- [5] Tanaka K, Miwa T, Sasaki K, et al. J. Alloys Compd., 2009, 478:308-316
- [6] Gu H, Zhu Y F, Li L Q. Int. J. Hydrogen Energy, 2009,34: 1405-1410
- [7] Porcu M, Petford-long A K, Sykes J M. J. Alloys Compd., 2008.453:341-346
- [8] Hirohisa U. Int. J. Hydrogen Energy, 1999,24:861-869
- [9] Liu X F, Zhu Y F, Li L Q. J. Alloys Compd., 2006,425:235-238
- [10]Liu J, Song X P, Pei P, et al. J. Alloys Compd., 2009,486: 338-342
- [11]Teresiak A, Uhlemann M, Gebert A, et al. J. Alloys Compd., 2009,481:144-151
- [12]Chio M D, Schiffini L, Enzo S, et al. Renew. Energ., 2008, 33:237-240
- [13]Chio M D, Ziggiotti A, Baricco M. Intermetallics, 2008,16: 102-106
- [14]Ouyang L Z, Yao L, Dong H W, et al. J. Alloys Compd., 2009.485:507-509
- [15]Han S M, Hu L, Li Y, et al. China Patent: CN101597711
- [16]Chio M D, Schiffini L, Enzo S, et al. J. Alloys Compd., 2007,434-435:734-737
- [17] Renaudin G, Guenee L, Yvon K. J. Alloys Compd., 2003, 350:145-150
- [18]Wu C L, Yan Y G, Chen Y G, et al. Int. J. Hydrogen Energy, 2008,33:93-97