3,5-二氨基苯甲酸构筑的 Zn(II)、Cd(II)两种配合物的合成及晶体结构

张美丽*.1.2 任宜霞² 陈小利² 闫洪涛¹ (¹西北大学化学与材料科学学院,西安 710069) (²延安大学化学与化工学院,陕西省化学反应工程重点实验室,延安 716000)

摘要:利用 3,5-二氨基苯甲酸配体合成了 2 种新的配合物[Cd(diaba)(phen)₂]NO₃·H₂O(1)和[Zn(diaba)(2,2'-bipy)₂](2)(H₂diaba=3,5-diaminobenzoic acid; phen=1,10-phenanthroline,2,2'-bipy=2,2'-bipyridine),并对其进行了元素分析、红外光谱和 X 射线单晶衍射测定。配合物 1 属于正交晶系,空间群为 Fddd,a=1.425 81(7) nm,b=2.564 62(13) nm,c=3.092 47(17) nm。配合物 2 属于单斜晶系,空间群为 F2dc,a=1.273 62 nm,b=1.592 78 nm,c=1.519 35 nm, β =107.334°。配合物 1 和 2 都为单核晶体。配合物 1 的结构单元由 1 个 C10 C11 个 3,5-二氨基苯甲酸和 2 个 phen 构成。配合物 2 的结构单元由 1 个 C11 个 3,5-二氨基苯甲酸和 2 个 C12 C12 bipy 构成。两种配合物再通过氢键或 C12 C13 C14 C15 C16 C16 C16 C16 C17 C18 C18 C19 C

关键词:配合物:合成:晶体结构

中图分类号: 0614.24*1; 0614.24*2 文献标识码: A 文章编号: 1001-4861(2014)04-0895-06

DOI: 10.11862/CJIC.2014.132

Synthesis and Crystal Structure of Zn(II) Cd(II) Two Complexes Constructed from 3,5-Diaminobenzoic Acid Ligand

ZHANG Mei-Li*,1,2 REN Yi-Xia² CHEN Xiao-Li² YAN Hong-Tao¹

(\(^1\)College of Chemistry and Materials Science, NorthWest University, Xian 716000, China)

(\(^2\)Department of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China)

Abstract: The title complexes, $[Cd (diaba) (phen)_2] NO_3 \cdot H_2O (1)$ and $[Zn (diaba) (2,2'-bipy)_2] (2)$ (diaba =3,5-diaminobenzoic acid; phen=1,10-phenanthroline, 2,2'-bipy=2,2'-bipyridine), has been synthesized by hydrothermal reactions and characterized by IR, TG, fluorescent spectrum and single-crystal X-ray diffraction techniques. The structure indicates that the complex 1 crystallizes in orthorhombic, space group *Fddd* with $a=1.425 \ 81(7)$ nm, $b=2.564 \ 62(13)$ nm, $c=3.092 \ 47(17)$ nm. The structure indicates that the complex 2 crystallizes in monoclinic, space group C2/c with $a=1.273 \ 62$ nm, $b=1.592 \ 78$ nm, $c=1.519 \ 35$ nm, $\beta=107.334^\circ$. The crystal structure of complex 1 consists of one Cd^{II} , one 3,5-diaminobenzoic acid ligand and two phen ligands. The crystal structure of complex 2 consists of one Zn^{II} , one 3,5-diaminobenzoic acid ligand and two 2,2'-bipy ligands. In two complexes, the adjacent mononuclear molecular recognize each other to generate a 3D supramolecular structure via the hydrogen bonding or the π - π stacking interaction. In additional, thermal stability and photoluminescence properties of two complexes have also been studied. CCDC: 936420, 1; 936421, 2.

Key words: complex; synthesis; crystal structure

Recently, the chemistry of Zn (II) and Cd (II) complexes has attracted interest for a number of reasons. The Zn (II) and Cd (II) are d^{10} electronic configuration and can adopt different coordination numbers from 4 to 6. Moreover, the Zn and Cd complexes offer not only the fascinating structure, but only a wide range of potential application in many aspects, such as optical, electrical conductivity, catalysis and even photoluminescent materials [1-4]. Up to now, a large numbers of complexes formed by Zn (II), Cd (II) and various N-donor, aromatic/heterocyclic multicarboxylate ligands have been successfully synthesized and characterized [5-10]. However, the complex based on 3, 5-diaminobenzoic acid with Zn(II), Cd(II) have never been reported before.

Inspired by our previous works ^[11], we employed 3,5-diaminobenzoic acid and Zn(II), Cd(II) to synthesize two novel complexes, namely, $[Cd(diaba)(phen)_2]$ $NO_3 \cdot H_2O$ (1) and $[Zn(diaba)(2,2'-bipy)_2]$ (2) (diaba=3,5-diaminobenzoic acid; phen=1,10-phenanthroline, 2,2'-bipy=2,2'-bipyridine), which provides the first example of complex based on 3,5-diaminobenzoic acid-Zn(II), Cd(II).

1 Experimental

1.1 Materials and methods

The reagents and solvents employed were commercially available and used as received without further purification. Elemental analyses for carbon, hydrogen, and nitrogen were performed with a Vario EL III elemental analyzer. The FTIR spectra were recorded from KBr pellets in the range 4 000~400cm⁻¹ on a Bruker EQUINOX-55 spectrometer. Fluorescence spectra were performed on a Hitachi F-4500 fluorescence spectrophotometer at room temperature. Thermogravimetric analyses (TGA) were performed under nitrogen with a heating rate of 10 °C ·min ⁻¹

using a NETZSCH STA 449C thermogravimetric analyzer.

1.2 Syntheses of title complex

Single-crystal samples of complex **2** were obtained by the similar method as described for **1**.

[Cd(diaba)(phen)₂]NO₃·H₂O(1). 1 was synthesized hydrothermally in a 23-mL teonlined autoclave by heating a mixture of Cd(NO₃)₂·6H₂O (1.0 mmol), daba (1.0 mmol), phen (0.5 mmol), and H₂O (8 mL) at 160 °C for 4 days. After the reactive mixture was slowly cooled to room temperature, colorless block crystals of 1 were obtained (Yield: 41%, based on Cd). Anal. Calcd. for C₃₁H₂₇O₆N₇Cd(%): C, 52.74; H, 3.85; N, 13.89. Found(%): C, 52.45; H,3.53; N, 13.31. IR (cm⁻¹): 3 327(br), 1 618(w), 1 558 (s), 1 411 (s), 1 375 (w), 1 184 (w), 999 (w), 854 (s), 777(s).

[Zn(diaba)(2,2'-bipy)₂] (**2**). Yield: 38% (based on Zn). Anal. Calcd. for $C_{27}H_{23}N_6O_2Zn$ (%): C, 61.32; H, 4.38; N, 15.89. Found (%): C, 61.26; H, 4.54; N, 15.96. IR (cm⁻¹): 3 464 (br), 1 602 (s), 1 537 (s), 1 438 (s), 1 354 (s), 1 195 (w), 1 026 (s), 862 (w), 788 (m).

1.3 Crystal structure determination

Diffraction intensities for the complexes 1 and 2 were collected at 293 K on a Bruker SMART 1000 CCD diffractometer employing graphite-monochromated Mo $K\alpha$ radiation (λ =0.071 073nm). A semiempirical absorption correction was applied using the SADABS program^[12]. The structure was solved by direct methods and refined by full-matrix least-squares on F^2 using the SHELXS 97 and SHELXL 97 programs, respectively [13-14]. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in geometrically calculated positions. The crystallographic data for complex 1 are listed in Table 1, and selected bond lengths and angles are listed in Table 2.

CCDC: 936420, 1; 936421, 2.

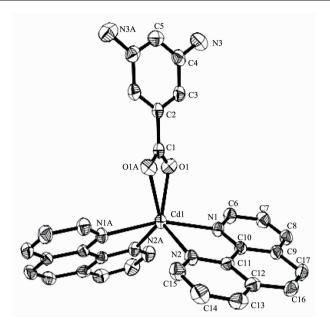
Table 1 Crystallographic data for compounds 1 and 2

Compound	1	2
Empirical formula	$\mathrm{C_{31}H_{27}O_6N_7Cd}$	$C_{27}H_{23}N_6O_2Zn$
Formula weight	706.00	528.88
Crystal dimensions / mm	0.32×0.21×0.10	0.42×0.30×0.11

Crystal system	Orthorhombic	Monoclinic
Space group	Fddd	C2/c
a / nm	1.425 81(7)	1.273 62(13)
<i>b</i> / nm	2.564 62(13)	1.592 78(15)
c / nm	3.092 47(17)	1.519 35(16)
β / (°)	90	107.334(10)
V / nm 3	11.308 1(10)	2.942 2(5)
Z	8	4
$D_{\rm c}$ / (g·cm ⁻³)	1.659	1.194
Absorption coefficient / mm ⁻¹	0.833	0.866
F(000)	5 728	1 092
T / K	273(2)	273(2)
Reflections collected	17 808	2 656
Reflections unique	3 505	2 656
Observed data($I > 2\sigma(I)$)	2 073	2 130
$R_{ m int}$	0.027 1	0.027 1
Parameters	208	165
Goodness-of-fit on F^2	1.076	1.092
$R_1(I>2\sigma(I))$	0.030 2	0.030 1
wR_2	0.079 4	0.080 9

Table 2 Selected bond length (nm) and angles ($^{\circ}$) for compounds 1 and 2

1							
Cd(1)-O(1)	0.233 2(2)	Cd(1)-N(1)	0.234 36(18)	Cd(1)-N(2)	0.233 67(19)		
O(1)-Cd(1)-O(1)A	55.41(11)	O(1)-Cd(1)-N(2)	134.08(7)	O(1)A-Cd(1)-N(2)	102.44(7)		
$\mathrm{N}(2)\mathrm{A}\text{-}\mathrm{Cd}(1)\text{-}\mathrm{N}(2)$	118.06(10)	$\mathrm{O}(1)\text{-}\mathrm{Cd}(1)\text{-}\mathrm{N}(1)$	83.07(7)	$\mathrm{N}(2)\mathrm{A}\text{-}\mathrm{Cd}(1)\text{-}\mathrm{N}(1)$	97.55(7)		
$\mathrm{N}(2)\text{-}\mathrm{Cd}(1)\text{-}\mathrm{N}(1)$	71.60(6)	$\mathrm{O}(1)\text{-}\mathrm{Cd}(1)\text{-}\mathrm{N}(1)\mathrm{A}$	115.94(7)	N(1)-Cd(1)- $N(1)$ A	159.39(10)		
		2					
Zn(1)-N(1)	0.210 82(16)	Zn(1)-N(2)	0.212 01(16)	Zn(1)-O(1)	0.221 43(15)		
N(1)-Zn(1)-N(1)A	102.34(9)	N(1)-Zn(1)-N(2)	77.88(6)	N(1)-Zn(1)-N(2)A	100.26(6)		
N(2)-Zn(1)-N(2)A	177.09(9)	N(1)- $Zn(1)$ - $O(1)$	156.84(6)	N(1)- $Zn(1)$ - $O(1)A$	99.77(5)		
N(2)-Zn(1)-O(1)	91.52(6)	N(2)-Zn(1)-O(1) A	91.00(6)	O(1)-Zn(1)-O(1)A	59.44(7)		


Symmetry operations: 1: A -x+1/4, y, -z+1/4; 2: A -x, y, -z+1/2

2 Result and discussion

2.1 Crystal structure of [Cd (diaba) (phen)₂]NO₃ · H₂O(1)

The structures of the two complexes were determined by single-crystal X-ray diffraction analyses. Complex 1 belongs to orthorhombic, space group Fddd. While complex 2 belongs to monoclinic with C2/c space group.

The crystal structure of **1** consists of one crystallographic independent Cd^{II} cation, one diaba ligand and two phen ligands. Each Cd^{II} cation is surrounded by four nitrogen atoms from two 1,10-phen ligands, and two oxygen atoms from one diaba ligand, composing a distorted octahedron pyramidal geometry (Fig.1). The Cd-N bond lengths are 0.233 67 (19), 0.234 36 (18) nm, respectively, and the Cd-O bond lengths are 0.233 2(2) nm, which drop into the normal

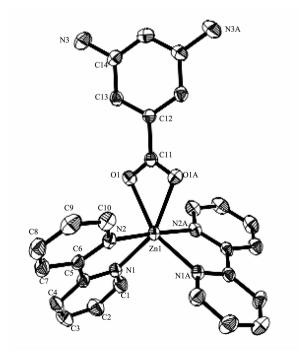

All hydrogen atoms are omitted for clarity; 50% thermal ellipsoids. Symmetry code: A: -x+1/4, y, -z+1/4

Fig.1 Coordination environments of Cd atom in complex 1

scope of Cd-N and Cd-O bond lengths $^{[15]}$. The details are depicted in Table 2. The deproton $\mathrm{NO_3}^-$ ions do not coordinate with the central atoms, acting as free ions in the crystal lattice to charge balance. At last the Cd octahedrons, crystal waters and $\mathrm{NO_3}^-$ ions construct the new 3D supramolecular network by

intricate hydrogen bonds and weak $\pi \cdots \pi$ stacting interaction.

The structure of complex **2** is the same as complex **1**, they are mononuclear structure. Each Zn^{II} ion is six-coordinated to four nitrogen atoms of two 2,2'-bipy ligands and two oxygen atoms of one diaba

All hydrogen atoms are omitted for clarity; 50% thermal ellipsoids. Symmetry code: A: -x, y, -z+1/2

Fig.2 Coordination environments of Zn atom in complex 2

ligand, fabricating a distorted octahedron pyramidal geometry (Fig.2). The Zn-N bond lengths are 0.210 82(16), 0.212 01(16) nm, respectively, and the Zn-O bond lengths are 0.221 43 (15) nm, which drop into the normal scope of Zn-N and Zn-O bond lengths [16]. The 3D supramolecular network is also constructed via intricate hydrogen bonds and weak π $\cdots \pi$ stacting interaction.

2.2 Thermogravimetric analyses

Thermogravimetric analyses have been performed in air for 1 and 2 between 20 and 800 °C (Fig.3, Fig. 4). TGA curve of complex 1 illustrates that weight loss was observed for lattice water and NO_3^- ion up to 300 °C; after this, significant weight loss occurred and ended at ca. 700 °C, indicating the complete decomposition of the complex to form CdO. This conclusion has been also supported by the percentage of the residues (18.03%), which is in accordance with the expected value (18.13%). For 2, there are not lattice and coordination water molecules and thus decomposition of the organic components occurs at

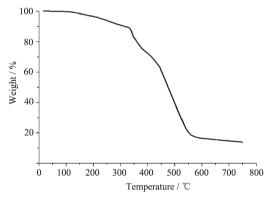


Fig.3 TGA curve for complex 1

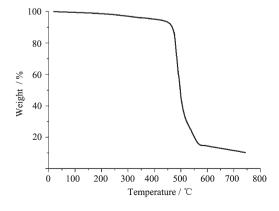


Fig.4 TGA curve for complex 2

430 $^{\circ}$ C, indicating the complete decomposition of the complex to form ZnO (Obsd: 14.7% and Calcd: 15.3%).

2.3 Fluorescent properties

Solid-state Luminescent emission spectra of complexes 1 and 2 are depicted in Fig.5. The intense broad photoluminescence emissions are found at 399 nm (λ_{ex} =335 nm) for **1**, at 395 nm (λ_{ex} =325 nm) for **2**. In order to understand the nature of the emission band, the photoluminescence property of free diaba ligand was measured with the observation of one weak emission at 367 nm (λ_{ex} =300 nm). In comparison to the free ligand, most of the emission maxima of complexes 1 and 2 are changed, which are neither metal-to-ligand charge transfer (MLCT) nor ligand-tometal transfer (LMCT) in nature, since the ZnII and Cd^{II} ions are difficult to oxidize or reduce. Thus, they may be assigned to intraligand $(\pi - \pi^*)$ fluorescent emission [17]. Many aromatic ligands that are not strongly emissive themselves display significant luminescence when coordinated to Zn^{II} or Cd^{II} . The enhancement of luminescence is perhaps a result of the coordination effect of those ligands to the metal center, which effectively increases the rigidity of ligands, thereby reducing the non-radiative decay of the intraligand $(\pi - \pi^*)$ excited state^[19].

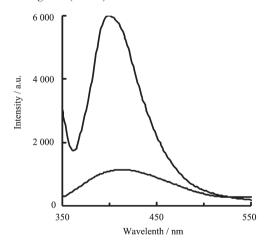


Fig.5 Solid-state emission spectra of 1(low curve), 2 (tall curve) at room temperature

References:

[1] Allendorf M D, Bauer C A, Bhaktaa R K, et al. Chem. Soc. Rev., 2009,38:1330-1352

- [2] Rocha J, Carlos L D, Paza F A A, et al. Chem. Soc. Rev., 2011.40:926-940
- [3] Karabach Y Y, Silva M F C G, Kopylovich M N, et al. *Inorg. Chem.*, 2010,49:11096-11105
- [4] XUE Ming(薛铭), CHEN Si-Ru(陈思如), GUO Li-Jia (郭莉佳), et al. *Chem. J. Chinese Universities* (高等学校化学学报), **2012**,33(9):1889-1894
- [5] Ma L F, Wang L Y, Wang Y Y, et al. Inorg. Chem., 2009,48 (3):915-924
- [6] Ma L M, Li B, Sun X Y, et al. Anorg. Allg. Chem., 2010, 636:1606-1611
- [7] Xu C Y, Li L K, Wang Y P, et al. Cryst. Growth Des., 2011, 5:1869-1879
- [8] Sun D, Yan Z H, Blatov V A, et al. Cryst. Growth Des., 2013, 13(3):1277-1289
- [9] Zhang Z H, Chen S C, He M Y, et al. Cryst. Growth Des., 2013,13(3):996-1001
- [10]HU Jing-Song(胡劲松), LIU Xi-Hui(刘希慧), SHI Jian-Jun (石建军), et al. *Chinese J. Inorg. Chem.* (无机化学学报), **2013.29**(3):444-448

- [11]Zhang M L, Li D S, Wang J J, et al. Dalton Trans., 2009,11: 5355-5364
- [12] Sheldrick G M. SADABS, A Program for Empirical Absorption Correction of Area detector Data, University of Gttingen, Germany, 1997.
- [13] Sheldrick G M. SHELXS 97, Program for Crystal Structure Solution, University of Gttingen, Germany, 1997.
- [14]Sheldrick G M. SHELXL 97, Program for Crystal Structure Refinement, University of Gttingen, Germany, 1997
- [15]Tian D, Pang Y, Zhou Y H, et al. CrystEngComm, 2011,13: 957-966
- [16]Liu B, Yang G P, Wang Y Y, et al. *Inorg. Chim. Acta*, 2011,367:127-134
- [17]Wen L L, Dang D B, Duan C Y, et al. *Inorg. Chem.*, 2005, 44:7161-7170
- [18]Bai H Y, Ma J F, Yang J, et al. Cryst. Growth Des., 2010, 10:1946-1959
- [19]Chang Z, Zhang A S, Hu T L, et al. Cryst. Growth Des. 2009,9:4840-4846