三个包含酰胺型配体铜/锌配合物的合成、结构及荧光性质 毛盼东¹ 闫玲玲*² 吴伟娜*¹ 姚必鑫³ 刘珉琦³ 王 元¹ (¹河南理工大学化学化工学院,焦作 454000) (²河南理工大学物理与电子信息学院,焦作 454000) (³河南理工大学材料科学与工程学院,焦作 454000) 摘要:合成并通过单晶衍射表征了3个配合物[CuLCl₂]·CH₃CN (1),[CuLBr₂]·CH₃CN (2)和[ZnL(NO₃)₂]·CH₃CN (3)(L=2-(5-氯-8-喹啉氧基)-1-(吡咯烷-1-基)乙酮)。在配合物1和2中,五配位的铜离子采取扭曲的四方锥配位构型,与来自配体L的2个氧原子和1个氮原子及2个卤离子配位。而在配合物3中,锌离子与1个三齿配位的配体L,1个单齿配位的硝酸根和1个双齿配位的硝酸根配位,配位构型为扭曲的八面体。乙腈溶液中,配合物1和2在410 nm处的最大荧光发射峰与配体L的相似,强度有所降低。而配合物3由于配体到锌离子之间的能量转移.最大荧光发射峰红移至430 nm。 关键词:铜配合物; 锌配合物; 酰胺型配体; 晶体结构; 荧光中图分类号: 0614.121; 0614.24*1 文献标识码: A 文章编号: 1001-4861(2016)08-1476-05 **DOI**: 10.11862/CJIC.2016.182 # Syntheses, Crystal Structures and Fluorescence Properties of Three Cu(II)/Zn(II) Complexes with an Amide Type Ligand MAO Pan-Dong¹ YAN Ling-Ling*.² WU Wei-Na*.¹ YAO Bi-Xin³ LIU Min-Qi³ WANG Yuan¹ (¹College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China) (²School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China) (³School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China) **Abstract:** Three complexes, [CuLCl₂] ·CH₃CN (1), [CuLBr₂] ·CH₃CN (2) and [ZnL (NO₃)₂] ·CH₃CN (3) (L=2-(5-chloroquinolin-8-yloxy)-1-(pyrrolidin-1-yl)ethanone), were synthesized and characterized by X-ray diffraction. In each of complexes 1 and 2, the five-coordinated Cu(II) ion is in a distorted tetragonal pyramid with a NO₂ donor set from one ligand L and two halide anions. However, the Zn(II) ion in complex 3 is surrounded by one tridentate ligand L and two nitrate anions, one of which is monodentate and the other is bidentate, thus giving distorted octahedral coordination geometry. In CH₃CN solution, complexes 1 and 2 exhibit similar peak at 410 nm as that of the ligand L, while with a decrease of the fluorescence intensity. However, the emission band of complex 3 red-shifts to 430 nm because of energy transferring from the ligand L to the Zn(II) ion. CCDC: 1474712, 1; 1474713, 2; 1474714, 3. Keywords: Cu(II) complex; Zn(II) complex; amide type ligand; crystal structure; fluorescence It is well known that the amide type ligands, which are effective chelating agents for lanthanide (III) ions and have terminal-group effects, will shield the encapsulated ions from interaction with the surroundings effectively to achieve strong characteristic fluorescent emission of the centre metal ions^[1-6]. Besides, some acetamide ligands bearing quinolinyloxy unit have also been used for the recognition of important transition metal ions, such as Zn(II), Cd(II) or Hg(II), due to the metal-induced fluorescence emission enhancement[7-8]. Our previous work shows that this kind of ligands could coordinate to Cu(II)/Zn(II) ions to form stable complexes^[9-10]. Thus, in this paper, three Cu(II)/ Zn(II) complexes containing an amide type ligand were synthesized and characterized by X-ray diffraction. In addition, the fluorescence properties of all compounds are investigated in detail. # 1 Experimental #### 1.1 Materials and measurements Solvents and starting materials for synthesis were purchased commercially and used as received. Elemental analysis was carried out on an Elemental Vario EL analyzer. The IR spectra (ν =4 000~400 cm⁻¹) were determined by the KBr pressed disc method on a Bruker V70 FT-IR spectrophotometer. ¹H NMR spectra of the ligand L was acquired with Bruker AV400 NMR instrument in DMSO-d₆ solution with TMS as internal standard. The UV spectra were recorded on a Purkinje General TU-1800 spectrophotometer. Fluorescence spectra were determined on a Varian CARY Eclipse spectrophotometer. ### 1.2 Preparations of the complexes The ligand L (Scheme 1) was prepared according to literature methods^[5], while using 2-chloro-1-(pyrrolidin -1-yl)ethanone instead of 2-chloro-*N*-phenylacetamide. Yield: 69%; m.p. 89~92 °C. Elemental analysis for $C_{17}H_{13}N_2O_2Cl(\%)$: Calcd: C: 65.29; H: 4.19; N: 8.96; Found: C: 65.18; H: 4.33; N: 8.88. ¹H NMR (400 MHz, CDCl₃): δ 8.97~8.98 (1H, dd, Ar-H), 8.50~8.53 (1H, dd, Ar-H), 7.72~7.75 (1H, q, Ar-H), 7.67~7.69 (1H, d, Ar-H), 7.13~7.17 (1H, d, Ar-H), 4.99 (2H, s, CH₂), 3.53~3.56 (2H, t, CH₂), 3.33~3.37 (2H, t, CH₂), Scheme 1 Synthetic scheme for ligand L 1.87~1.92 (2H, m, CH₂), 1.77~1.82 (2H, m, CH₂). FT-IR (cm⁻¹): ν (C=O) 1 682, ν (C=N) 1 598, ν (Ar-O-C) 1 254. The ligand L (0.1 mmol) and $CuCl_2 \cdot 2H_2O$ (0.1 mmol) were dissolved in an acetonitrile solution (4 mL). After stirred for about 1 h, the mixture was filtered and set aside to crystallize at room temperature. The crystals suitable for single crystal X-ray analyses are obtained after few days. The synthesis of **2** and **3** is similar to that of **1**, while using $CuBr_2$ and $Zn(NO_3)_2 \cdot 6H_2O$ instead of $CuCl_2 \cdot 2H_2O$, respectively. 1: orange rods. Yield: 59% (based on L). Anal. Calcd. for $C_{17}H_{18}N_3O_2Cl_3Cu$ (%):C, 43.79; H, 3.89; N, 9.01. Found(%): C, 43.62; H, 4.01; N, 8.98. IR (KBr, cm⁻¹): $\nu(C\equiv N)$, 2 249, $\nu(C=0)$ 1 624, $\nu(C=N)$ 1 588, $\nu(Ar-O-C)$ 1 242. **2**: orange rods. Yield 68% (based on L). Anal. Calcd. for $C_{17}H_{18}N_3O_2ClBr_2Cu(\%)$: C, 36.78; H, 3.27; N, 7.57. Found (%): C, 36.67; H, 3.19; N, 7.52. IR (KBr, cm⁻¹): $\nu(C \equiv N)$, 2 248, $\nu(C=O)$ 1 622, $\nu(C=N)$ 1 589, $\nu(Ar-O-C)$ 1 238. 3: colorless rods. Yield 68% (based on L). Anal. Calcd. for $C_{17}H_{18}N_5O_8ClZn(\%)$: C, 39.18; H, 3.48; N, 13.44. Found(%): C, 39.07; H, 3.39; N, 13.52. IR (KBr, cm⁻¹): $\nu(C \equiv N)$, 2 247, $\nu(C=0)$ 1 634, $\nu(C=N)$ 1 588, $\nu(Ar-O-C)$ 1 244, $\nu_1(NO_3)$ 1 485, $\nu_4(NO_3)$ 1 385 and 1 302. # 1.3 X-ray crystallography The X-ray diffraction measurement for complexes $1\sim3$ were performed on a Bruker SMART APEX II CCD diffractometer equipped with a graphite monochromatized Mo $K\alpha$ radiation (λ =0.071 073 nm) by using φ - ω scan mode. Semi-empirical absorption correction was applied to the intensity data using the SADABS program^[11]. The structures were solved by | Table 1 | Selected | crystallographic | data for | complexes 1~3 | 3 | |----------|----------|-------------------|----------|---------------|---| | I abic I | Bullettu | CI youanugi apinc | uata ivi | COMPICACS 1 | , | | | 1 | 2 | 3 | |---|---------------------------------|---------------------------------|---------------------------------| | Empirical formula | $C_{17}H_{18}N_3O_2Cl_3Cu$ | $C_{17}H_{18}N_3O_2ClBr_2Cu$ | $C_{17}H_{18}N_5O_8ClZn$ | | Formula weight | 466.23 | 555.15 | 521.18 | | T / K | 296(2) | 296(2) | 296(2) | | Crystal system | Orthorhombic | Orthorhombic | Monoclinic | | Space group | Pbcn | Pbcn | $P2_1/c$ | | a / nm | 1.475 9(13) | 1.491 0(9) | 0.868 9(10) | | b / nm | 1.193 2(11) | 1.201 3(7) | 2.278(2) | | c / nm | 2.203(2) | 2.287 2(14) | 1.089 7(12) | | β / (°) | | | 91.49(2) | | V / nm^3 | 3.880(6) | 4.097(4) | 2.156(4) | | Z | 8 | 8 | 4 | | $D_{\rm c}$ / $({ m g} { m \cdot cm}^{-3})$ | 1.596 | 1.800 | 1.606 | | Unique reflections | 3 421 | 3 614 | 3 780 | | $R_{ m int}$ | 0.106 8 | 0.050 4 | 0.064 8 | | Goodness of fit (on F^2) | 1.054 | 1.030 | 1.022 | | R indices $[I>2\sigma(I)]$ | R_1 =0.058 2, wR_2 =0.119 1 | R_1 =0.035 6, wR_2 =0.074 8 | R_1 =0.058 2, wR_2 =0.121 9 | | R indices (all data) | R_1 =0.088 4, wR_2 =0.133 0 | R_1 =0.064 5, wR_2 =0.084 5 | R_1 =0.118 4, wR_2 =0.148 3 | | Largest peak and hole / $(e \cdot nm^{-3})$ | 473 and -543 | 401 and -480 | 329 and -424 | direct methods and refined by fullmatrixleast-square on F^2 using the SHELX-97 program^[12]. All non-hydrogen atoms were refined anisotropically. The H atoms for water molecules are located from difference Fourier map and refined with restraints in bond length and thermal parameters. All the other H atoms were positioned geometrically and refined using a riding model. Details of the crystal parameters, data collection and refinements for complexes $1 \sim 3$ are summarized in Table 1. CCDC: 1474712, 1; 1474713, 2; 1474714, 3. #### 2 Results and discussion # 2.1 Crystal structures of the complexes Complexes **1** and **2** are isostructural and crystallize in the orthorhombic, space group Pbcn. As shown in Fig.1, in each complex, the Cu(II) ion is five-coordinated by one amide ligand with NO_2 donor set and two halide anions (chloride for **1** and bromide for **2**). Selected bond lengths and angles are summarized in Table 2. According to the Addison rule^[9], the geometric index τ is 0.285 5 and 0.396 1 for Cu(II) Fig.1 Molecular structures of complexes 1~3 (a~c) shown with 30% probability displacement ellipsoids Table 2 Selected bond lengths (nm) and angles (°) in complexes 1~3 | | | 1 | [| | | |-------------|--------------|------------|--------------|-------------|------------| | Cu1-N1 | 0.200 4(5) | Cu1-O1 | 0.222 0(4) | Cu1-O2 | 0.201 1(4) | | Cu1-Cl2 | 0.222 0(2) | Cu1-Cl3 | 0.221 8(2) | | | | Cl2-Cu1-O1 | 114.75(13) | N1-Cu1-O2 | 148.83(17) | N1-Cu1-Cl2 | 96.65(15) | | N1-Cu1-O1 | 75.54(16) | N1-Cu1-Cl3 | 96.95(15) | O2-Cu1-Cl2 | 97.09(13) | | O2-Cu1-O1 | 73.31(14) | O2-Cu1-Cl3 | 94.53(14) | Cl3-Cu1-Cl2 | 131.70(9) | | Cl3-Cu1-O1 | 113.50(12) | | | | | | | | 2 | 2 | | | | Cu1-N1 | 0.202 1(3) | Cu1-O1 | 0.219 8(3) | Cu1-O2 | 0.201 7(3) | | Cu1-Br1 | 0.240 12(12) | Br2-Cu1 | 0.238 21(11) | | | | Br2-Cu1-Br1 | 127.62(4) | O2-Cu1-N1 | 151.39(13) | O2-Cu1-Br2 | 96.47(9) | | O2-Cu1-Br1 | 94.58(9) | O2-Cu1-O1 | 74.69(10) | N1-Cu1-Br2 | 97.66(11) | | N1-Cu1-Br1 | 96.27(11) | N1-Cu1-O1 | 76.70(12) | O1-Cu1-Br2 | 120.76(9) | | O1-Cu1-Br1 | 111.55(8) | | ` ' | | . , | | | | 3 | 3 | | | | Zn1-N1 | 0.205 8(5) | Zn1-O1 | 0.222 2(4) | Zn1-O2 | 0.202 1(4) | | Zn1-O3 | 0.237 1(6) | Zn1-O4 | 0.208 2(5) | Zn1-06 | 0.201 4(5) | | O6-Zn1-O2 | 99.22(16) | N1-Zn1-O4 | 103.9(2) | 06-Zn1-03 | 140.71(19) | | O6-Zn1-N1 | 100.05(18) | O6-Zn1-O1 | 124.96(16) | O2-Zn1-O3 | 94.69(18) | | O2-Zn1-N1 | 146.61(17) | O2-Zn1-O1 | 73.08(15) | N1-Zn1-O3 | 87.33(19) | | O6-Zn1-O4 | 85.4(2) | N1-Zn1-O1 | 73.54(16) | O4-Zn1-O3 | 55.5(2) | | O2-Zn1-O4 | 104.6(2) | O4-Zn1-O1 | 149.7(2) | O1-Zn1-O3 | 94.22(19) | ion in complexes **1** and **2**, respectively, indicating that the coordination geometry of Cu(II) ion in each complex is a distorted tetragonal pyramid. It is worth noting that the coordination behavior of the ligand L in both complexes is quite different to those in $[CuL_2^1Cl_2] \cdot DMF$ and $[CuL_2^2Cl_2]$, $(L^1=N-(4-\text{chlorophenyl})-2-(\text{quinolin-8-yloxy})$ acetamide) $L^2=N$, $L^2=N$, $L^2=N$, $L^2=N$, $L^2=N$, $L^2=N$, and $L^2=N$, By contrast, the Zn(II) ion in complex **3** (Fig.1c) is surrounded by one tridentate ligand L and two nitrate anions, one of which is monodentate and the other is bidentate, thus giving distorted octahedral coordination geometry. Its structure is different from that of [ZnL³(NO₃)₂]·CH₃CN (L³=N-(naphthalen-1-yl)-2-(quinolin-8-yloxy)acetamide), in which the ligand L³ is also tridentate while two nitrate anions are both monodentate^[9]. As expected, there are no classic hyd- rogen bonds in the structures of all three complexes. #### 2.2 IR spectra The IR spectra of free ligand L show strong band at 1 682 cm⁻¹, which is attributable to stretch vibrations of the carbonyl group (ν (C=O)). The peak at 1 598 cm⁻¹ should be assigned to the ν (C=N), and the peak at 1 254 cm⁻¹ to ν (Ar-O-C), respectively. In three complexes, the $\nu(C=0)$, $\nu(C=N-N)$ and $\nu(quinoline C=$ N) shifts to lower wavenumber in three complexes, indicating that carbonyl oxygen, ethereal oxygen and quinoline nitrogen atoms take part in coordination [9]. In addition, the intense absorption bands in the spectra of complex 3 associated with the asymmetric stretching appear at 1 385, 1 302 cm⁻¹ (ν_4) and 1 485 cm⁻¹ (ν_1), clearly establishing that two NO₃⁻ groups are monodentate and bidentate ligands, respectively^[13]. The $\nu(C \equiv N)$ bands in complexes 1~3 appear at around 2 250 cm⁻¹, clearly showing the existence of CH₃CN molecules. It is in accordance with the result of the crystal structure study. #### 2.3 UV spectra The UV spectra of L, and complexes $1 \sim 3$ in CH₃CN solution (concentration: 1×10^{-5} mol·L⁻¹) were measured at room temperature (Fig.2). The spectra of L features two main bands located at 244 (ε =156 000 L·mol⁻¹·cm⁻¹) and 316 nm (ε =19 500 L·mol⁻¹·cm⁻¹), which should be assigned to characteristic π - π * transitions centered on quinoline ring and the acetamide unit, respectively^[9-10]. Similar bands at 243 (ε =224 000 L·mol⁻¹·cm⁻¹) and 318 (ε =42 900 L·mol⁻¹·cm⁻¹) nm, 243 (ε =198 000 L·mol⁻¹·cm⁻¹) and 322 (ε =40 000 L·mol⁻¹·cm⁻¹) nm, 245 (ε =90 000 L·mol⁻¹·cm⁻¹) and 319 (ε =10 800 L·mol⁻¹·cm⁻¹) nm in complex 1 ~3, respectively. The spectra variations indicated that the ligand L takes part in the coordination in three complexes. Fig.2 UV spectra of L (a), $\bf 1$ (b), $\bf 2$ (c) and $\bf 3$ (d) in CH3CN solution at room temperature #### 2.5 Fluorescence spectra The fluorescence spectra of the ligand L and complexes 1~3 have been studied in CH₃CN solution (concentration: 1×10⁻⁵ mol·L⁻¹) at room temperature. The results show that the emission spectra of complexes 1 and 2 exhibit only one main peak at 410 nm when excited at 320 nm, which is similar as that of the ligand L (Fig.3). Compared with that of the ligand L, the fluorescence intensity of complexes 1 and 2 decreased dramatically, probably due to the inherent magnetic property of Cu²⁺ ions^[14]. However, the emission band of complex 3 red-shifts to 430 nm (excited at 320 nm), indicating the energy transferring from the ligand L to the Zn(II) ion^[9,13]. Concentration: 1×10⁻⁵ mol·L⁻¹ Fig.3 Fluorescence emission spectra of L (a), 1 (b), 2 (c) and 3 (d) in CH₃CN solution at room temperature #### **References:** - [1] Song X Q, Yu Y, Liu W S, et al. J. Solid State Chem., 2007, 180:2616-2624 - [2] Song X Q, Wen X G, Liu W S, et al. J. Solid State Chem., 2010.183:1-9 - [3] Sharma A K, Biswas S, Barman S K, et al. *Inorg. Chim. Acta*, 2010,363:2720-2727 - [4] Munjal M, Kumar S, Sharma S K, et al. *Inorg. Chim. Acta*, 2011,377:144-154 - [5] MAO Pan-Dong(毛盼东), CHEN Liang(陈亮), WU Wei-Na (吴伟娜), et al. *Chinese J. Inorg. Chem.* (无机化学学报), **2016,32**:336-342 - [6] Wu W N, Tang N, Yan L. J. Fluoresc., 2008,18:101-107 - [7] Song K C, Kim J S, Park S M, et al. Org. Lett., 2006,8:3413 -3416 - [8] Zhou X, Li P, Shi Z, et al. Inorg. Chem., 2012,51:9226-9231 - [9] WU Wei-Na(吴伟娜), WANG Yuan(王元), TANG Ning(唐宁). Chinese J. Inorg. Chem.(无机化学学报), 2012,28:425-428 - [10]CAI Hong-Xin(蔡红新), WU Wei-Na(吴伟娜), WANG Yuan (王元). Chinese J. Inorg. Chem.(无机化学学报), **2013,29**: 845-849 - [11]Sheldrick G M. *SADABS*, University of Göttingen, Germany, **1996**. - [12]Sheldrick G M. SHELX-97, Program for the Solution and the Refinement of Crystal Structures, University of Göttingen, Germany, 1997. - [13]LI Xiao-Jing(李晓静), WU Wei-Na(吴伟娜), XU Zhou-Qing (徐周庆), et al. *Chinese J. Inorg. Chem.*(无机化学学报), **2015.31**:2256-2271 - [14]Qin J C, Wang B D, Yang Z Y, et al. Sens. Actuators B, 2016,224:892-898