基于 2,4,6-吡啶三酸配体的 Co(II)、Ni(II)配位聚合物的合成、 结构和磁性分析

银秀菊 「廖蓓玲 「吴汉民 」 庞毅林 「李石雄*,12 (1河池学院化学与生物工程学院,宜州 546300) (2华南理工大学环境与能源学院,广州 510006)

摘要:以 2,4,6-吡啶三酸为配体,采取水热合成的方法,在相同温度、物质的量之比、溶剂,不同金属盐条件下合成了 $\{[M_3(pyta)_2(H_2O)_8]\cdot 4H_2O\}_n(M=Co(1),Ni(2),H_3pyta=2,4,6-吡啶三酸)配位聚合物。X 射线单晶衍射测试分析表明 2 个配合物是异质同晶结构,属于单斜晶系,<math>P_2/c$ 空间群。磁性测试表明在配合物的中心离子 M(II)之间存在反铁磁耦合作用。

关键词:配位聚合物; 2,4,6-吡啶三酸; 磁性

中图分类号: 0614.81⁺2; 0614.81⁺3 文献标识码: A 文章编号: 1001-4861(2017)06-1043-08

DOI: 10.11862/CJIC.2017.116

Syntheses, Structures and Magnetic Analysis of Co(II), Ni(II) Coordination Polymers Based on Pyridine-2,4,6-tricarboxylic Acid

YIN Xiu-Ju¹ LIAO Bei-Ling¹ WU Han-Min¹ PANG Yi-Lin¹ LI Shi-Xiong*, 12 (1College of Chemistry and Biological Engineering, Hechi University, Yizhou, Guangxi 546300, China) (2School of Environment and Energy, South China University of Technology, Guangzhou 510006, China)

Abstract: The title coordination polymers of $\{[M_3(\text{pyta})_2(\text{H}_2\text{O})_8]\cdot 4\text{H}_2\text{O}\}_n(\text{M}=\text{Co}(1), \text{Ni}(2)) \text{ based on H}_3\text{pyta} = \text{pyridine-2,4,6-tricarboxylic acid)}$ had been synthesized under hydrothermal synthesis conditions with same temperature, molar ratio and solvent, but different metal salts. X-ray diffraction analysis shows that these two polymers are hetero-isomorphic and belong to the monoclinic system, $P2_1/c$ space group. The magnetic investigation shows that polymers 1 and 2 exhibit a ferromagnetic coupling between M(II) ions. CCDC: 1524314, 1; 1000880, 2.

Keywords: coordination polymer; pyridine-2,4,6-tricarboxylic acid; magnetic

0 Introduction

Since "single-molecule magnets" (SMMs) were discovered, design and synthesis of the paramagnetic transition polymetallic cluster are attractive to researchers^[1-5]. Recently many different directions have being pursued in the research field of SMMs ^[6-11], in which an important direction has been found that the

intermolecular interaction with different correlation in the whole molecular arrangement, though very weak, can perturb the intrinsic properties of individual SMMs^[12]. In our previous work^[13-14], we have reported and studied antiferromagnetic(AF) coupling interaction between magnetic centers. Ligands 3-/4-pyridinecarboxylate and pyridinecarboxylate have recently been found to act as excellent building

收稿日期:2016-12-28。收修改稿日期:2017-04-15。

blocks with charge and multi-connecting ability in the construction of functional coordination polymers with porosity, photolumineseent or magnetic properties [15-16]. Compared with the previously investigated pyridine-2,4,6pyridinecarboxylate ligands, tricarboxylic acid (H₃pyta) have the advantages of multiple bridging moieties, which leads to a variety of connection modes with transition metal centers and provides abundant structural motifs. It can act not only as N-donors but also as $O_{\text{carboxylate}}$ -donors to chelate or bridge metal ions to form coordination polymers^[17], and some complexes can act as SMMs [18]. In this paper, we report Co(II) and Ni(II) polymers based on pyridine-2,4,6-tricarboxylic acid (H₃pyta): {[M₃(pyta)₂ (H₂O)₈] ·4H₂O}_n, and analyze their thermogravimetric and magnetic properties.

1 Experimental

All solvents and chemicals were commercial reagents and used without further purification. pyridine-2,4,6-tricarboxylic acid synthesized according to the reference [17]. Elemental analyses (carbon, hydrogen, and nitrogen) were performed with a Perkin-Elmer 240 elemental analyzer. IR spectra were measured from KBr pellets on a Nicolet 5DX FTIR spectrometer. XRD was performed using Rigaku D/max 2500 X-ray diffractometer (Cu $K\alpha$ radiation, $\lambda = 0.156 \text{ 04 nm}, U = 40 \text{ kV}, I = 150 \text{ mA}, 2\theta = 5^{\circ} \sim 65^{\circ}$). The TGA was determined by Perkin Elmer Pyris Diamond TG-DTA. The magnetic measurements were carried out with a Quantum Design MPMS-XL7 and a PPMS-9 ACMS magnetometer.

1.1 Synthesis of $\{[Co_3(pyta)_2(H_2O)_8]\cdot 4H_2O\}_n$ (1)

 $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}(0.072~4~\text{g,3}~\text{mmol}),~\text{H}_3\text{ptc}(0.021~1~\text{g,}$ 1 mmol) were mixed in 7 mL distilled H₂O water and 3 mL ethanol. The pH value of the solution was

adjusted to 7 with 1 mol·L⁻¹ NaOH, and then sealed in a 23 mL Teflon-lined stainless steel autoclave. The mixture was heated in an oven at 100 °C for two days , and cooled to room temperature at a rate of 10 °C·h⁻¹. Red massive crystals of **1** were obtained. Yield: 95% (based on H₃ptc). Anal. Calcd. for $C_{16}H_{28}Co_3N_2O_{24}$ (%): C, 23.74; H, 3.46; N, 3.46. Found (%): C, 23.77; H, 3.40; N, 3.48. $IR(cm^{-1})$: 3 448s, 1622s, 1 509w, 1 444w, 1 378s, 1 312w, 1 256w,1 114w, 926w, 747m, 512m.

1.2 Synthesis of{ $[Ni_3(pyta)_2(H_2O)_8] \cdot 4H_2O$ }_n(2)

The procedures were similar to the synthesis of **1** except that the metal salts was NiCl₂ · $6H_2O$. Green massive crystals of **2** were obtained. Yield: 86%. (based on H_3ptc). Anal. Calcd. for $C_{16}H_{28}Ni_3N_2O_{24}$ (%): C, 23.75; H, 3.46; N, 3.46. Found (%): C, 23.81; H, 3.41; N, 3.52. IR (cm⁻¹): 3 853m, 3 749m, 3 438s, 2 348w, 1 622s, 1 430w, 1 378s, 1 289w,1 113w, 926w, 747m, 512m.

1.3 X-ray diffraction

Single-crystal X-ray diffraction data were collected on a Agilent supernova diffractometer equipped with graphite-monochromated Mo radiation with radiation wavelength 0.071 073 nm, by using the x-scan technique. For 1 and 2, the structures were solved by direct methods using the SHELXS-2013 [19], and refined by full-matrix least-squares on F^2 using the $Olex^2$ program^[20]. All non-hydrogen atoms were refined anistropically. Hydrogen atoms were generated geometrically and refined isotropically with the riding mode. Crystallographic crystal data and structure processing parameters for polymers 1~2 are summarized in Table 1. Selected bond lengths and bond angles for polymers 1~2 are listed in Table 2, and hydrogen bonds for polymers **1~2** are listed in Table 3.

CCDC: 1524314, 1; 1000880, 2.

Table 1 Crystal data and structure parameters for polymers 1~2

Polymer	1	2
Empirical formula	$C_{16}H_{28}Co_3N_2O_{24}\\$	$C_{16}H_{28}Ni_3N_2O_{24}$
Formula weight	809.19	808.53
T / K	298	296
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/c$

Continued Table 1		
a / nm	0.718 0(3)	0.713 56(16)
<i>b</i> / nm	1.185 75(8)	1.857 4(4)
c / nm	1.083 5(5)	1.076 1(2)
β / (°)	103.880(5)	103.225(3)
V / nm^3	1.402 9(10)	1.388 4(5)
$D_{ m c}$ / $({ m g\cdot cm^{-3}})$	1.916	1.934
Z	2	2
Limiting indices	-8≤h≤8	-8≤h≤8
	$-22 \leq k \leq 22$	$-21 \leq k \leq 22$
	-12≤ <i>l</i> ≤12	-12≤ <i>l</i> ≤12
F(000)	822	828
θ range / (°)	2.2~25.1	2.2~25.1
S	1.00	1.00
$R_{ m int}$	0.034	0.023
Reflections, parameters, restraints	2 496, 205, 0	2 465, 205, 0
$R_1*[c \ge 2\sigma(\text{parameters, restraints})]$	0.023	0.027
wR_2^*	0.051	0.067
μ / $\mathrm{mm}^{ ext{-1}}$	1.86	2.12
$(\Delta/\sigma)_{ ext{mex}}$	0.001	0.001
$(\Delta\! ho)_{ m max},~(\Delta\! ho)_{ m min}$ / $({ m e}\cdot{ m nm}^{-3})$	340, -530	320, -440

 $^{{}^*}R_1 = \sum \left(||F_o||F_c|| \right) / \sum |F_o|, \ wR_2 = [\sum \left(||F_o|^2 |F_c||^2 \right)^2 / \sum |F_o|^2]^{1/2}$

Table 2 Selected bond lengths (nm) and bond angles (°) for polymers 1~2

		1			
Co(1)-O(1)A	0.202 16(15)	Co(2)-O(5)	0.207 49(15)	Co(1)-N(1)	0.205 40(17)
Co(2)-O(5)B	0.207 49(15)	Co(1)-O(7)	0.207 60(18)	Co(2)-O(9)B	0.208 6(2)
Co(1)-O(8)	0.211 24(18)	Co(2)-O(9)	0.208 6(2)	Co(1)-O(6)	0.215 57(15)
Co(2)-O(10)B	0.210 23(19)	Co(1)-O(2)	0.226 94(16)	Co(2)-O(10)	0.210 23(19)
O(1)A-Co(1)-N(1)	176.96(6)	O(5)-Co(2)-O(5)B	180	O(1)A-Co(1)-O(7)	87.90(6)
O(5)- $Co(2)$ - $O(9)B$	93.70(7)	N(1)-Co(1)-O(7)	89.24(6)	O(5)B-Co(2)-O(9)B	86.30(7)
O(1)A-Co(1)-O(8)	84.77(6)	O(5)-Co(2)-O(9)	86.30(7)	N(1)-Co(1)-O(8)	98.10(6)
O(5)B-Co(2)-O(9)	93.70(7)	O(7)-Co(1)-O(8)	172.64(6)	O(9)B-Co(2)-O(9)	180
O(1)A-Co(1)-O(6)	103.55(6)	O(5)- $Co(2)$ - $O(10)B$	88.46(6)	N(1)-Co(1)-O(6)	75.51(6)
O(5)B-Co(2)-O(10)B	91.54(6)	O(7)-Co(1)-O(6)	91.83(7)	O(9)B-Co(2)-O(10)B	92.39(9)
O(8)-Co(1)-O(6)	90.50(7)	O(9)- $Co(2)$ - $O(10)B$	87.61(9)	O(1)A-Co(1)-O(2)	107.43(6)
O(5)-Co(2)-O(10)	91.54(6)	N(1)-Co(1)-O(2)	73.87(6)	O(5)B-Co(2)-O(10)	88.46(6)
O(7)-Co(1)-O(2)	95.47(6)	O(9)B-Co(2)-O(10)	87.61(9)	O(8)-Co(1)-O(2)	86.16(6)
O(9)-Co(2)-O(10)	92.39(9)	O(6)-Co(1)-O(2)	148.38(5)	O(10)B-Co(2)-O(10)	180
		2			
Ni(1)-N(1)	0.199 6(2)	Ni(2)-O(5)B	0.202 29(17)	Ni(1)-O(1)A	0.200 10(18)
Ni(2)-O(5)	0.202 29(17)	Ni(1)-O(7)	0.204 7(2)	Ni(2)-O(10)B	0.206 9(2)
Ni(1)-O(8)	0.205 5(2)	Ni(2)-O(10)	0.206 9(2)	Ni(1)-O(6)	0.212 39(18)
Ni(2)-O(9)	0.2075(2)	Ni(1)-O(2)	0.229 56(19)	Ni(2)-O(9)B	0.207 5(2)

Continued Table 2					
N(1)-Ni(1)-O(1)A	178.12(8)	O(1)A-Ni(1)-O(8)	85.47(8)	N(1)-Ni(1)-O(7)	90.44(8)
O(7)-Ni(1)-O(8)	173.13(7)	O(1)A-Ni(1)-O(7)	87.81(8)	N(1)-Ni(1)-O(6)	78.00(8)
N(1)- $Ni(1)$ - $O(8)$	96.26(8)	O(1)A-Ni(1)-O(6)	102.71(7)	O(7)-Ni(1)-O(6)	91.24(8)
O(5)-Ni(2)-O(10)	93.06(8)	O(8)-Ni(1)-O(6)	91.67(8)	O(10)B-Ni(2)-O(10)	180
N(1)-Ni(1)-O(2)	74.62(7)	$\mathrm{O}(5)\mathrm{B}\text{-Ni}(2)\text{-O}(9)$	93.62(8)	$\mathrm{O}(1)\mathrm{A}\text{-}\mathrm{Ni}(1)\text{-}\mathrm{O}(2)$	104.81(7)
O(5)-Ni(2)-O(9)	86.38(8)	O(7)-Ni(1)-O(2)	93.75(8)	O(10)B-Ni(2)-O(9)	87.87(12)
O(8)-Ni(1)- $O(2)$	86.56(8)	O(10)-Ni(2)-O(9)	92.13(12)	O(6)-Ni(1)-O(2)	152.19(7)
$\mathrm{O}(5)\mathrm{B}\text{-Ni}(2)\text{-O}(9)\mathrm{B}$	86.38(8)	$\mathrm{O}(5)\mathrm{B}\text{-Ni}(2)\text{-O}(5)$	180	O(5)-Ni(2)- $O(9)B$	93.62(8)
$\mathrm{O}(5)\mathrm{B}\text{-Ni}(2)\text{-O}(10)\mathrm{B}$	93.06(8)	O(10)B-Ni(2)-O(9)B	92.13(12)	O(5)-Ni(2)-O(10)B	86.94(8)
$\mathrm{O}(10)\text{-}\mathrm{Ni}(2)\text{-}\mathrm{O}(9)\mathrm{B}$	87.87(12)	O(5)B-Ni(2)-O(10)	86.94(8)	O(9)-Ni(2)- $O(9)B$	180

Symmetry codes: A: x, -y+1/2, z+1/2; B: -x, -y+1, -z+1; C: x, -y+1/2, z-1/2

Table 3 $\,$ Hydrogen bonds parameters for polymers 1 and 2

$D-H\cdots A$	d(D-H) / nm	$d(\mathbf{H}\cdots\mathbf{A})$ nm	$d(\mathbf{D}\cdots\mathbf{A})$ / nm	\angle D-H···A/(°)
		1		
O(8)-H(8)b···O(12)D	0.079	0.200	0.273 2(2)	156
$\mathrm{O}(8)\text{-}\mathrm{H}(8)\mathrm{a}\cdots\mathrm{O}(4)\mathrm{E}$	0.090	0.182	0.271 5(2)	172
$\mathrm{O}(7)\text{-}\mathrm{H}(7)\mathrm{b}\cdots\mathrm{O}(12)\mathrm{F}$	0.082	0.196	0.276 1(2)	165
O(7)- $H(7)a$ ··· $O(3)G$	0.086	0.182	0.268 2(2)	175
O(9)- $H(9)$ b··· $O(11)$	0.081	0.202	0.282 6(3)	174
$O(9)$ - $H(9)a \cdots O(3)H$	0.087	0.182	0.267 0(2)	168
$\mathrm{O}(10)\text{-}\mathrm{H}(10)\mathrm{b}\cdots\mathrm{O}(8)\mathrm{A}$	0.091	0.242	0.302 2(3)	124
O(10)- $H(10)a$ ··· $O(6)$	0.078	0.203	0.264 5(2)	137
O(11)- $H(11)$ b···O(9) I	0.088	0.251	0.329 1(3)	148
O(11)-H(11)a···O(2)A	0.078	0.232	0.304 3(3)	154
O(12)- $H(12)$ b···O(4)	0.079	0.194	0.272 1(2)	167
O(12)-H(12)a···(11)I	0.089	0.195	0.283 7(3)	173
		2		
O(8)-H(8)b···O(12)D	0.084	0.193	2.744(3)	162
$\mathrm{O}(8)\text{-}\mathrm{H}(8)\mathrm{a}\cdots\mathrm{O}(4)\mathrm{E}$	0.085	0.186	2.702(3)	173
$O(7)$ - $H(7)$ b \cdots $O(12)$ F	0.084	0.194	2.771(3)	167
O(7)- $H(7)a$ ··· $O(3)G$	0.084	0.185	2.688(3)	174
O(9)- $H(9)$ b··· $O(11)$	0.085	0.200	2.848(3)	175
O(9)- $H(9)a$ ··· $O(3)G$	0.085	0.183	2.666(3)	166
$\mathrm{O}(10)\text{-}\mathrm{H}(10)\mathrm{b}\cdots\mathrm{O}(8)\mathrm{A}$	0.083	0.246	3.075(3)	132
O(10)-H(10)a···O(6)	0.085	0.196	2.653(3)	137
O(11)- $H(11)$ b···O(9) H	0.083	0.244	3.172(4)	147
O(11)- $H(11)a$ ··· $O(2)I$	0.084	0.221	2.994(3)	155
O(12)- $H(12)$ b···O(4)	0.085	0.189	2.735(3)	170
O(12)-H(12)a···O(11)I	0.085	0.198	2.818(3)	169

Symmetry codes: A: x, -y+1/2, z+1/2; D: -x, y-1/2, z+1/2; E: -x, -y+1, -z; F: -x+1, y-1/2, -z+1/2; G: -x+1, -y+1, -z; H: x, y, z+1; I: -x+1, -y+1, -z+1

第 6 期 结构和磁性分析 1047

2 Results and discussion

2.1 Crystal structures of 1 and 2

X-ray single-crystal diffraction analysis reveals that polymers 1 and 2 crystallizes in monoclinic system, space group $P2_1/c$, they are hetero-isomorphic and two-dimensional structure polymers. The coordination environment of M(II) in 1 and 2 is shown in Fig.1a. The asymmetric unit consists of three M(II) ions, two pyta³⁻ ligand, eight coordinated water molecules, and four free water molecules.

There are three separate M (II) ions and two coordination modes in the polymers. The first coordination mode is that the M(II) ion is coordinated by one nitrogen atom(N1) and three oxygen atoms(O1, O2,O6) from pyta³⁻ ligand and two coordinated water

molecules (07,08). The other one is that the M(II) ion is coordinated by six oxygen atoms (05,05B from two different pyta³- ligand and 09, 09A, 010, 010A from four coordinated water molecules). These two different M(II) ions in 1 and 2 both are six-coordinated. For polymer 1, the Co-O distances fall in the range of 0.202 16(15)~0.226 94(16) nm. The Co-N distance is 0.205 40(17) nm. The bond angles of N1-Co1-O2 and 010-Co2-010B are 73.87(6)° and 180.0°, respectively. For polymer 2, the Ni-O distances fall in the range of 0.200 10(18)~0.229 56(19) nm. The Ni-N distance is 0.199 6(2) nm. The bond angles of N1-Ni1-O2 and 09B-Ni2-O9 are 74.62(7)° and 180.0°, respectively. These bond angles and bond distances all fall in the normal ranges^[17,21].

Symmetry codes: A: x, -y+1/2, z+1/2; B: -x, -y+1, -z+1; C: x, -y+1/2, z-1/2 in (a)

Fig.1 (a) Coordination environment of M(II)(M=Co, Ni) ions in $1\sim2$; (b) 2-D network structure of polymers $1\sim2$ viewed along a axis; (c)Hydrogen bonds in $1\sim2$; (d) 3D structure of $1\sim2$ formed by hydrogen bonds viewed along b axis

In polymers **1** and **2**, the five coordination sites on the ligand all coordinate with metal ions. So, the pyta³ - ligand adopts a μ_5 - η^1 : η^2 : η^2 bridging style to coordinate with M(II) ions. Two O atoms from carboxyl of ligand coordinate with two M(II) ions, so carboxyl adopts a μ_2 - η^1 : η^1 bridging style to coordinate with M(II) ions. As the ligand adopts a μ_5 - η^1 : η^2 : η^2 bridging style and carboxyl takes a μ_2 - η^1 : η^1 bridging style, the polymers **1** and **2** exhibit a very special two-

dimensional network structure along a axis (Fig.1b).

Owing to the introduction of water molecules, the crystals of polymers 1 and 2 have a large number of hydrogen bonds. The O atoms in carbonyl group on the ligand form O-H \cdots O intramolecular hydrogen bonds with coordinated water molecules. The free water molecules in polymers 1 and 2 form O-H \cdots O intermolecular hydrogen bonds with coordinated water molecules (Fig.1c). These hydrogen bonds finally

generate a three-dimensional network structure by bridging the two-dimensional planes with intermolecular hydrogen bonds (Fig.1d).

2.2 PXRD and thermal gravimetric analysis

In order to check the purity of polymers 1 and 2,

powder X-ray diffraction of the as-synthesized samples was measured at room temperature. The peak positions of experimental patterns are in good agreement with the simulated ones, which clearly indicates good purity of the polymers 1 and 2(Fig.2).

Fig.2 PXRD patterns for polymers 1(a) and 2(b)

The thermal stabilities of polymers 1 and 2 were tested in the range of 45~1 000 °C under a nitrogen atmosphere at a heating rate of 5°C ⋅min⁻¹ and TGA curves of polymers 1 and 2 were shown in Fig.3. The TGA curve of 1 show that polymer 1 first loses twelve water molecules (Obsd. 27.59%, Calcd. 26.69%) in the range of $45 \sim 236$ °C . The second weight loss is responsible for the decomposition of all organic components in the range of 236~556 °C. The residue with weight of 31.72% might be Co₂O₃ (Calcd. 30.75%). The TGA curve of 2 show that polymer 2 first loses twelve water molecules (Obsd. 23.52%, Calcd. 23.75%) in the range of 45~123 °C. Further weight loss is responsible for the decomposition of all organic components in the range of 123~503 °C. The residue with weight of 28.79% might be NiO(Calcd. 27.71%).

2.4 Magnetic analysis for polymers 1~2

Co(II) (d^7) of polymer 1 and Ni(II) (d^8) of polymer 2 have unpaired electrons, so their magnetic properties are studied. The magnetic susceptibilities, χ_m of 1 and 2 were measured in the 2 ~300 K temperature range, and shown as plots of χ_m and $\chi_m T$ versus T in Fig.4a and Fig.4b, respectively. As shown in Fig.4a, the molar magnetic susceptibility χ_m of polymer 1 increases gradually as the temperature lowers, and more rapidly increases below 25 K, then reaches a maximum value of 2.24 cm³·mol⁻¹ at 2 K. It can be seen from the $\chi_m T$ curve that the $\chi_m T$ value is 9.56 cm³·mol⁻¹·K at 300 K, which is significantly higher than the theoretical value 5.64 cm³·mol⁻¹·K of the high-spin triplet Co²⁺, indicating a great spin-orbit coupling contribution. As the decrease of temperature,

Fig.3 TGA curves of polymers 1(a) and 2(b)

第6期 结构和磁性分析 1049

the $\chi_{\rm m}T$ begin to decrease slowly, and the decrease in the range of 300 ~25 K could be attributed to the single ion behavior of ${\rm Co^{2^+}}$. But the $\chi_{\rm m}T$ more rapidly reduces below 25 K, then reaches a minimum value of 4.46 cm³·mol¹·K at 2 K. Combined with the decrease in the $\chi_{\rm m}T$ value when cooling, this result indicates the presence of weak antiferromagnetic interactions in polymer ${\bf 1}^{[22]}$. At 300K, the magnetic moment ($\mu_{\rm eff}$) of cobalt(II), which is determined by the equation $\mu_{\rm eff}$ = 2.828 ($\chi_{\rm m}T$)^{1/2}, reaches the peak value of 8.74 $\mu_{\rm B}$. This value is slightly higher than that expected for an isolated divalent high-spin Co (II) system with $\mu_{\rm eff}$ = 3.87 $\mu_{\rm B}$.

As shown in Fig.4b, the molar magnetic susceptibility χ_m of polymer 2 increases gradually as the temperature lowers, and more rapidly increases

below 25 K, then reaches a maximum value of 0.48 cm³·mol⁻¹ at 2 K. It can be seen from the $\chi_m T$ curve that the $\chi_{\rm m}T$ value is 3.76 cm³·mol⁻¹·K at 300 K, which is equal to the theoretical value of the highspin binuclear Ni²⁺. As the decrease of temperature, the $\chi_m T$ decrease slowly, and the decrease in the range of 300~25 K could be attributed to the single ion behavior of Ni²⁺. But there is more rapidly reduction for $\chi_{\rm m}T$ below 25 K, then it reaches a minimum value of 0.96 cm3·mol-1·K at 2 K. At 300 K, the magnetic moment (μ_{eff}) of nickel(II) reaches the peak value of $5.48\mu_{\rm B}$. This value is slightly higher than that expected for an isolated divalent high-spin Ni (II) system with $\mu_{\rm eff} = 2.83 \mu_{\rm B}$. From magnetic data of the polymers, it is clear that AF coupling mainly occurs between intrachain metal ions.

Fig.4 Plots of χ_m and $\chi_m T$ vs T of polymers $\mathbf{1}(a)$ and $\mathbf{2}(b)$

3 Conclusions

In summary, two coordination polymers based on pyridine-2,4,6-tricarboxylic acid had been synthesized and characterized. X-ray diffraction study reveals that the polymers $1 \sim 2$ are isostructural and have twodimensional network structure. The magnetic measurement reveals the pyridine-2,4,6-tricarboxylic acid bridge ligand mediate can antiferromagnetic (AF) coupling interaction between magnetic centers.

References:

[1] Rumberger E M, Shah S J, Beedle C C, et al. *Inorg. Chem.*, 2005,44:2742-2752

- [2] Rinehart J D, Long J R. Chem. Sci., 2011,2:2078-2085
- [3] Meihaus K R, Long J R. Dalton Trans., 2015,44:2517-2528
- [4] Zhang S H, Zhang Y D, Zou H H, et al. *Inorg. Chim. Acta*, 2013,396:119-125
- [5] Zhang S H, Huang Q P, Zhang H Y, et al. J. Coord. Chem., 2014,69:3155-3166
- [6] Wang J H, Zhang S H, Wang W, et al. J. Cluster Sci., 2015, 26:1129-1142.
- [7] Huang X R, Yang L, Zhou Y J, et al. J. Cluster Sci., 2015, 26:2033-2042
- [8] Limas N G, Manz T A. RSC Adv., 2016,6:45727-45747
- [9] Liddle S T, van Slageren J. Chem. Soc. Rev., 2015,44:6655-6669
- [10] Aubin S M J, Wemple M W, Adams D M, et al. J. Am. Chem. Soc., 1996,118:7746-7754
- [11]LI Huan(李欢), CHEN Yun-Zhou(陈云舟), WANG Yan-Jun (王艳君), et al. *Chinese J. Inorg. Chem.* (无机化学学报), **2016,32**:2198-2204

- [12]Miyasaka H, Yamashita M. Dalton Trans., 2007,36:399-406
- [13]Liao B L, Li S X, Guo J J, et al. Russ. J. Coord. Chem., 2016,42:285-291
- [14]LIAO Bei-Ling(廖蓓玲), LI Shi-Xiong(李石雄), YIN Xiu-Ju (银秀菊), et al. *Chinese J. Inorg. Chem.*(无机化学学报), **2016.32**:1255-1260
- [15]Lu J Y. Coord. Chem. Rev., 2003,246:327-347
- [16]Zhang L Y, Zhang J P, Lin Y Y, et al. Cryst. Growth Des., 2006,6:1684-1689
- [17]Gao H L, Yi L, Zhao B, et al. Inorg. Chem., 2006,45:481-483

- [18]Li C J, Peng M X, Leng J D, et al. CrystEngComm, 2008, 10:1645-1652
- [19]Sheldrick G M. Acta Crystallogr. Sect. A, 2008,A64:112-122
- [20]Bourhis L J, Dolomanov O V, Gildea R J, et al. Acta Crystallogr. Sect. A, 2015,A71:59-75
- [21]LI Shi-Xiong(李石雄), LIAO Bei-Ling(廖蓓玲), LUO Pei (罗培), et al. *Chinese J. Inorg. Chem.* (无机化学学报), **2015,31**:291-296
- [22] Jia L H, Li R Y, Duan J M, et al. *Inorg. Chem.*, **2011,50**: 144-154