基于 3-乙基-2-乙酰吡嗪缩肼基甲酸甲酯的铜和锌配合物的晶体结构及荧光性质 毛盼东¹ 陈泽华*,¹ 王 媛² 秦 莉² 吴伟娜¹ 王 元*,¹ (¹河南理工大学化学化工学院,焦作 454000) (²河南理工大学材料科学学院,焦作 454000) 摘要:合成并通过单晶 X 射线衍射、元素分析及红外光谱表征了配合物[Cu(HL)Cl₂]·H₂O (1)和[ZnL₂] (2)的结构(HL 为 3-乙基-2-乙酰吡嗪缩肼基甲酸甲酯)。单晶衍射结果表明,在配合物 1 中,Cu(II)离子拥有四方锥配位构型,与一个中性配体 HL 和 2 个氯离子配位。配合物 2 中,Zn(II)离子与来自 2 个阴离子配体 L-的 N₂O 电子供体配位,配位构型为扭曲的八面体。此外还研究了配合物 1 和 2 的固体荧光性质。 关键词: 肼基甲酸甲酯; 吡嗪; 荧光; 晶体结构 中图分类号: 0614.121; 0614.24⁺1 文献标识码: A 文章编号: 1001-4861(2017)10-1849-06 DOI: 10.11862/CJIC.2017.214 # Cu(II) and Zn(II) Complexes Based on Methyl (1-(3-Ethylpyrazin-2-yl)ethylidene)carbazate: Crystal Structures and Fluorescence Properties MAO Pan-Dong¹ CHEN Ze-Hua*. WANG Yuan² QIN Li² WU Wei-Na¹ WANG Yuan*. (College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China) (College of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China) **Abstract:** Two complexes, namely $[Cu(HL)Cl_2] \cdot H_2O(1)$ and $[ZnL_2](2)$ (HL=methyl (1-(3-ethylpyrazin-2-yl)ethylidene) carbazate) have been synthesized and characterized by single-crystal X-ray diffraction, elemental analysis and IR spectroscopy. X-ray diffraction analysis results show that in complex 1, the Cu(II) ion with a distorted square pyramid coordination geometry is coordinated with one neutral ligand HL and two chloride anions. However, the central Zn(II) ion in complex 2 is surrounded by two independent anionic ligands with N_2O donor set, thus possesses a distorted octahedral coordination geometry. The luminescent properties of the complexes were also studied in detail. CCDC: 1544291, $(H_2L)NO_3$; 1544292, 1; 1544293, 2. Keywords: methyl hydrazinocarboxylate; pyrazine; fluorescence; crystal structure Transition metal complexes have become of increasing importance in synthetic chemistry, coordination chemistry, homogenous catalysis and biological chemistry^[1]. Among the various types of ligands, Schiff bases, including acylhydrazones^[2-4], thiosemicarbazones^[5-6] and semicarbazones^[7-8], and their transition metal complexes have been widely investigated due to the high biological and pharmaceutical activities. However, as 收稿日期:2017-04-17。收修改稿日期:2017-07-19。 国家自然科学基金(No.21001040)、河南省科技厅基础与前沿项目(No.162300410011)、河南省教育厅自然科学基金(No.12B15001, 14B150029) 和河南省青年骨干教师项目(No.2014GGJS-045)资助。 ^{*}通信联系人。E-mail:chen1861@hpu.edu.cn,wangyuan08@hpu.edu.cn;会员登记号:S06N4036M1112(王元)。 their structurally analogous, carbazates (R-O-CO-NH-NH₂) have been paid much less attention^[9]. On the other hand, Cu²⁺ and Zn²⁺ are crucial to the life because they are present as important cofactors of various enzymes and numerous proteins^[10]. Furthermore, pyrazines are an important class of nitrogen heterocyclic compounds with a variety of biological activities and are used as key structural motifs for the synthesis of various pharmaceutical agents[11-12]. Our previous work has shown that the semicarbazone, namely, methyl (pyrazin-2-yl)ethylidene)carbazate could coordinate with Ni(II) and Cd(II) ions[9]. As the continuation of our work on Schiff base metal complexes, we report here the crystal structures of Cu(II) and Zn(II) complexes with methyl (1-(3-ethylpyrazin-2-yl)ethylidene)carbazate (HL). In addition, the luminescent properties of the complexes in solid state were investigated. # 1 Experimental #### 1.1 Materials and measurements Solvents and starting materials for synthesis were purchased commercially and used as received. Elemental analysis was carried out on an Elemental Vario EL analyzer. The IR spectra (ν =4 000~400 cm⁻¹) were determined by the KBr pressed disc method on a Bruker V70 FT-IR spectrophotometer. ¹H NMR spectra of L was acquired with Bruker AV400 NMR instrument in DMSO-d₆ solution with TMS as internal standard. The UV spectra were recorded on a Purkinje General TU-1800 spectrophotometer. Fluorescence spectra were determined on a Varian CARY Eclipse spectrophotometer. #### 1.2 Preparation of the ligand, complexes 1 and 2 As shown in Scheme 1, the ligand HL was produced by condension of 3-ethyl-2-acetyl pyrazine (1.51 g, 0.01 mol) and methyl hydrazinocarboxylate (0.90 g, 0.01 mol) in anhydrous methanol solution (30 mL) with continuous stirring at room temperature for 3 h. The white solid was filtered and washed three times by cold methanol. Yield: 1.44 g (65%). m.p. 111.9~112.5 °C. Elemental analysis Calcd. for $C_{10}H_{14}N_4O_2(\%)$: C: 54.04; H: 6.35; N: 25.21; Found(%): C: 54.22; H: 6.26; N: 25.15. FT-IR (cm⁻¹): ν (C=0) 1 727, ν (C=N) 1 605, ν (C=N)_{pyrazine} 1 560. ¹H NMR (400 MHz, DMSOd6): δ 10.44(1H, s, NH), 8.48~8.53 (2H, dd, pyrazine-H), 3.73 (3H, s, CH₃), 3.01~3.06 (2H, q, CH₂), 2.26 (3H, s, CH₃), 1.21~1.25 (3H, t, CH₃). Crystals of $(H_2L)NO_3$, complexes **1** and **2** suitable for X-ray diffraction analysis were obtained by slow evaporating the methanol solution (10 mL) of the ligand HL (5 mmol) with equimolar of $Ga(NO_3)_3 \cdot 6H_2O$, $CuCl_2 \cdot 2H_2O$ and $Zn(NO_3)_2 \cdot 6H_2O$ at room temperature, respectively. (H₂L)NO₃: colorless rods. 1: green plates. Anal. Calcd. for $C_{10}H_{16}N_4O_3Cl_2Cu$ (%): C: 32.05; H: 4.30; N: 14.95. Found(%): C: 32.12; H: 4.15; N: 15.02. FT-IR(cm⁻¹): ν (C=O) 1 720, ν (C=N) 1 566, ν (C=N)_{pyrazine} 1 508. **2**: yellow plates. Anal. Calcd. for $C_{20}H_{26}N_{8}O_{4}Zn$ (%): C: 47.30; H: 5.16; N: 22.06. Found(%): C: 47.22; H: 5.12; N: 22.15. FT-IR (cm⁻¹): ν (N=C-O) 1 644, ν (C=N) 1 562, ν (C=N)_{Dynazine} 1 510. #### 1.3 X-ray crystallography The single crystal X-ray diffraction data for (H₂L) NO₃, complexes **1** and **2** were performed on a Bruker SMART APEX Π CCD diffractometer equipped with a graphite monochromatized Mo $K\alpha$ radiation (λ = 0.071 073 nm) by using φ - ω scan mode at 296(2) K. Semi-empirical absorption correction was applied to the intensity data using the SADABS program^[13]. The structures were solved by direct methods and refined by full matrix least-square on F^2 using the SHELXTL-97 program^[14]. All non-hydrogen atoms were refined anisotropically. All the H atoms were positioned geometrically and refined using a riding model. The Scheme 1 Synthesis route of HL Z $D_{\rm c}$ / (g \cdot cm $^{-3}$) R indices $[I>2\sigma(I)]$ R indices (all data) Unique R_{int} GOF | | $(H_2L)NO_3$ | 1 | 2 | |---------------------|----------------------|-------------------------------------|------------------------| | Empirical formula | $C_{10}H_{15}N_5O_5$ | $C_{10}H_{16}N_{4}O_{3}Cl_{2}Cu \\$ | $C_{20}H_{26}N_8O_4Zn$ | | Formula weight | 285.27 | 374.71 | 507.86 | | Crystal system | Monoclinic | Monoclinic | Monoclinic | | Space group | $P2_1/c$ | $P2_1/c$ | $P2_1/c$ | | a / nm | 0.739 8(11) | 0.984 6(2) | 0.959 0(9) | | b / nm | 1.991(3) | 1.976 4(5) | 1.931 1(16) | | c / nm | 1.807(3) | 0.845 53(19) | 1.498 0(10) | | β / (°) | 102.15(3) | 114.560(3) | 127.38(4) | | V / nm^3 | 2.602(7) | 1.496 4(6) | 2.204(3) | | | | | | 4 1.663 2 632 0.025 1 1.028 Table 1 Crystal data and structure refinement for (H₂L)NO₃, complexes 1 and 2 O5 and O6 atoms of the nitrate anion in $(H_2L)NO_3$ occupied two positions, with the occupancy value of $OV_{05(06)}/OV_{05A(06A)}$ being 0.723/0.277. Details of the crystal parameters, data collection and refinements for $(H_2L)NO_3$, complexes 1 and 2 are summarized in Table 1. CCDC: 1544291, $(H_2L)NO_3$; 1544292, 1; 1544293, 2. 1.456 4 584 1.028 0.047 7 R_1 =0.060 8, wR_2 =0.162 6 R_1 =0.114 1, wR_2 =0.196 2 # 2 Results and discussion R_1 =0.031 4, wR_2 =0.080 6 R_1 =0.038 3, wR_2 =0.084 6 # 2.1 Crystal structure description Selected bond distances and angles, hydrogen bonds information for $(H_2L)NO_3$, complexes ${\bf 1}$ and ${\bf 2}$ are listed in Table 2 and 3, respectively. The reaction of the 4 1.530 3 879 0.135 8 R_1 =0.096 2, wR_2 =0.248 5 R_1 =0.149 0, wR_2 =0.280 2 1.010 Table 2 Selected bond lengths (nm) and angles (°) in (H₂L)NO₃, complexes 1 and 2 | | | (H_2L) | NO_3 | | | |-------------|-------------|-----------|-------------|---------------|------------| | O1-C9 | 0.118 2(4) | N4-C9 | 0.135 0(4) | N3-C7 | 0.125 8(4) | | C19-O3 | 0.117 0(4) | C19-N8 | 0.135 3(4) | C17-N7 | 0.124 6(4) | | | | 1 | | | | | Cu1-O1 | 0.208 5(2) | Cu1-N1 | 0.201 6(2) | Cu1-N3 | 0.196 4(2) | | Cu1-Cl1 | 0.243 89(9) | Cu1-Cl2 | 0.219 94(9) | | | | | 104.10/4) | NO C 1 N1 | 77.7.((0) | No. 0, 1, 610 | 1 (1 07/7) | | Cl2-Cu1-Cl1 | 104.18(4) | N3-Cu1-N1 | 77.76(9) | N3-Cu1-Cl2 | 161.27(7) | | N3-Cu1-Cl1 | 94.45(7) | N3-Cu1-O1 | 78.35(9) | N1-Cu1-Cl2 | 99.61(7) | | N1-Cu1-Cl1 | 102.52(7) | N1-Cu1-O1 | 152.38(9) | O1-Cu1-Cl2 | 98.55(6) | | O1-Cu1-Cl1 | 92.95(6) | | | | | | | | 2 | } | | | | Zn1-O1 | 0.212 0(5) | Zn1-N1 | 0.214 4(7) | Zn1-N3 | 0.207 2(6) | | Zn1-O3 | 0.210 9(6) | Zn1-N5 | 0.214 0(6) | Zn1-N7 | 0.206 6(7) | | N7-Zn1-N3 | 176.9(2) | O3-Zn1-O1 | 94.9(2) | N7-Zn1-N1 | 108.2(2) | | N7-Zn1-O3 | 75.0(2) | N7-Zn1-N5 | 74.2(2) | N3-Zn1-N1 | 74.3(2) | | N3-Zn1-O3 | 106.8(2) | N3-Zn1-N5 | 104.0(2) | O3-Zn1-N1 | 93.7(3) | | N7-Zn1-O1 | 102.2(2) | O3-Zn1-N5 | 149.1(2) | O1-Zn1-N1 | 149.6(2) | | N3-Zn1-O1 | 75.4(2) | O1-Zn1-N5 | 93.1(2) | N5-Zn1-N1 | 94.2(3) | ligand HL with $Ga(NO_3)_3$ generates crystals of $(H_2L)NO_3$, establishing the hydrolysis of the metal salt. The asymmetric unit of $(H_2L)NO_3$ contains two counter nitrate anions and two independent protonated (N2 and N6 atoms of pyrazines) organic ligands. Bond lengths of carbonyl C9-O1 $(0.118\ 2(4)\ nm)$ and C19-O3 $(0.117\ 0(4)\ nm)$ are shorter than those of some reported neutral semicarbazones ^[15]. In the crystal, H_2L molecules are linked by nitrate anions into one-dimensional chains (Fig.1d) via intermolecular N–H \cdots O hydrogen bonds. As shown in Fig.1b, complex 1 contains one crystal water molecule and one discrete Cu(II) complex, in which the ratio of the ligand HL and metal is 1:1 and Table 3 Hydrogen bonds information for (H₂L)NO₃ and complex 1 | D–H····A | d(D-H) / nm | $d(\mathbf{H}\cdots\mathbf{A})$ / nm | $d(\mathbf{D}\cdots\mathbf{A})$ / nm | ∠D-H···A / (°) | |-----------------------------------|-------------|--------------------------------------|--------------------------------------|----------------| | (H ₂ L)NO ₃ | | | | | | N2-H2···O5A | 0.86 | 0.194 | 0.276 3(15) | 160.1 | | N2-H2···O6A | 0.86 | 0.234 | 0.304(2) | 138.8 | | N2-H2···O5 | 0.86 | 0.211 | 0.281 6(6) | 138.9 | | N2-H2···O6 | 0.86 | 0.213 | 0.292 5(7) | 154 | | N4-H4···O10 | 0.86 | 0.207 | 0.287 7(5) | 155.3 | | N8-H8···O7 | 0.86 | 0.213 | 0.294 9(5) | 158.7 | | $N6-H6\cdots O8^{i}$ | 0.86 | 0.183 | 0.269 2(5) | 177 | | N6-H6···O9i | 0.86 | 0.244 | 0.302 2(5) | 125.4 | | 1 | | | | | | N4-H4···O3 ⁱⁱ | 0.86 | 0.188 | 0.272 2(3) | 166.6 | | O3-H3A···Cl1 ⁱⁱⁱ | 0.85 | 0.228 | 0.312 5(3) | 170.4 | | O3-H3B···Cl1 | 0.85 | 0.239 | 0.317 6(2) | 153.6 | Symmetry codes: ${}^{i}x-1, y, z-1; {}^{ii}x, y, z-1; {}^{iii}-x+1, -y+1, -z+1$ H atoms are omitted for clarity in (a)~(c); H atoms of C-H bonds are omitted for clarity in (d) and (e); Symmetry codes: ${}^{i}x-1$, y, z-1; ${}^{ii}x$, y, z-1; ${}^{ii}x-x+1$, -y+1, -z+1 Fig.1 Diamond drawing of $(H_2L)NO_3$ (a), complexes 1 (b) and 2 (c) with 30% thermal ellipsoids; Extended chain-like supramolecular structure in $(H_2L)NO_3$ (d) and complex 1 (e) the ligand is neutral tridentate with carbonyl C=O bond length being 0.122 5(3) nm. The Cu(II) ion is also coordinated with two chloride anions, giving a distorted square pyramid coordination geometry (τ = 0.148)^[16]. In the solid state, crysltal water molecules link the complexes into a one-dimensional chain along c axis (Fig.1e) through intermolecular N-H···O and O-H···Cl hydrogen bonds. By contrast, the central Zn(II) ion in complex 2 is surrounded by two independent anionic ligands with N₂O donor set, thus possesses a distorted octahedral coordination geometry. The enolization of C=O bond of the ligand can be confirmed by the bond lengths of C-O being 0.125 3(9) and 0.124 7(10) nm^[9,16]. The distances of Zn-N/O bonds were in the range of 0.206 6(7)~0.214 4(7) nm, comparable with those in some reported complexes with similar donor set^[16]. As expected, there exist none classic hydrogen bonds in the crystal of 2. #### 2.2 IR spectra The $\nu(\text{C=O})$ of the free ligand HL is at 1 727 cm⁻¹, and it shifts to lower frequency value in complex 1, confirming the coordination of the carbonyl group ^[9]. However, such absorption band is disappeared in complex 2, meanwhile, new (N=C-O) stretching vibration absorption is observed at 1 644 cm⁻¹, revealing that the C=O in O=C-N moiety has enolizated and the oxygen atom coordinates to the Zn(II) ion^[16]. The $\nu(\text{C=N})$ bands of the imine group and pyrazine ring in the ligand HL shift to lower frequency values in both complexes, indicating that the N atoms of both units take part in the coordination^[16], which is in accordance with the crystal structure study. #### 2.3 UV spectra The UV spectra of HL, complexes **1** and **2** in CH₃OH solution (1×10⁻⁵ mol·L⁻¹) were measured at room temperature (Fig.2). The spectra of HL features only one main band located around 285 nm (ε =6 389 L·mol⁻¹·cm⁻¹), which could be assigned to characteristic π - π * transition of pyrazine unit ^[9]. Similar bands are observed at 284 nm (ε =5 143 L·mol⁻¹·cm⁻¹) in that of complex **2**. However, there are three bonds in spectra of **1** at 257 nm (ε =9 334 L·mol⁻¹·cm⁻¹), 291 nm (ε =10 444 L·mol⁻¹·cm⁻¹) and 385 nm (ε =6 864 L·mol⁻¹·cm⁻¹). The former two could be contributed to the characteristic π - π * transition of pyrazine and imine unit, respectively, while the final one is probably due to the ligand-to-metal charge transfer (LMCT)^[16]. Fig.2 UV spectra of the ligand HL, complexes **1** and **2** in CH₃OH solution at room temperature ### 2.4 Fluorescence spectra Fig.3 shows the emission spectra of the ligand HL, complexes 1 and 2 in solid state. When excited at 330 nm, the ligand shows single emission band at 400 nm, while complex 2 exhibits two broad emissions at 400 and 490 nm, which is probably due to the energy transferring from the ligand to the Zn(II) ion^[17]. The behavior of Zn²⁺ coordinated to the ligand is regarded as that of emissive species resulting in a CHEF effect (chelation enhancement of the fluorescence emission)^[18]. By contrast, the center Cu(II) ion induces obvious fluorescence quenching of HL in complex 1. Fig.3 Fluorescence emission spectra of the ligand HL, complexes 1 and 2 in solid state at room temperature ### **References:** - [1] Sharma S, Chauhan M, Jamsheera A, et al. *Inorg. Chim. Acta*, 2017.458:8-27 - [2] El-Gammal O A, Bekheit M M, Tahoon M. Spectrochim. Acta A, 2015,135:597-607 - [3] Shaabani B, Khandar A A, Kazemi S S, et al. Polyhedron, 2013,49:61-66 - [4] Singh P, Singh D P, Singh V P. Polyhedron, 2014,81:56-65 - [5] Qi J, Deng J, Qian K, et al. Eur. J. Med. Chem., 2017,134: 34-42 - [6] Rogolino D, Cavazzoni A, Gatti A, et al. Eur. J. Med. Chem., 2017,128:140-153 - [7] Safavi M, Foroumadi A, Nakhjiri M, et al. *Bioorg. Med. Chem. Lett.*, 2010,20:3070-3073 - [8] Venkatachalam T K, Bernhardt P V, Noble C J, et al. J. Inorg. Biochem., 2016,162:295-308 - [9] MAO Pan-Dong(毛盼东), HAN Xue-Feng(韩学锋), WU Wei-Na(吴伟娜), et al. *Chinese J. Inorg. Chem.*(无机化学学报), **2016.32**:161-166 - [10]Trusso Sfrazzetto G, Satriano C, Tomaselli G A, et al. Coord. Chem. Rev., 2016,311:125-167 - [11]Li M X, Zhang L Z, Yang M, et al. Bioorg. Med. Chem. Lett., 2012,22:2418-2433 - [12]Li M X, Zhang L Z, Zhang D, et al. Eur. J. Med. Chem., 2011.46:4383-4390 - [13]Sheldrick G M. SADABS, University of Göttingen, Germany, 1996. - [14] Sheldrick G M. SHELX-97, Program for the Solution and the Refinement of Crystal Structures, University of Göttingen, Germany, 1997. - [15] Soria-Martínez R, Mendoza-Meroo R, García-Granda S. J. Mol. Struct., 2016,1105:322-331 - [16]WU Hao(吴浩), CHEN Ze-Hua(陈泽华), YU Ya-Ping(于亚平), et al. *Chinese J. Inorg. Chem.* (无机化学学报), **2017**, **33**:699-704 - [17]CHENG Mei-Ling(程美令), CAO Xiang-Qian(曹向前), WANG Chun-Lan(王春兰), et al. *Chinese J. Inorg. Chem.* (无机化学学报), **2006**,22:1222-1226 - [18] Vicente M, Bastida R, Lodeiro C, et al. *Inorg. Chem.*, 2003, 42:6768-6779