K₃ZrF₇:Mn⁴⁺红色荧光粉的溶剂热合成及发光性质

赵春梅¹ 宁德鹏² 李雪艳² 冀银豪¹ 温 婷^{*,2} (¹郑州工程技术学院化工食品学院,郑州 450044) (²黄河科技学院纳米功能材料研究所,郑州 450006)

摘要:用溶剂热法制备了K₃ZrF₇,并利用离子交换法对其进行Mn⁴⁺掺杂,获得了发光强度较高的红色荧光粉。分别用X射线衍 射仪(XRD)和扫描电子显微镜(SEM)对材料的结构和形貌进行了表征。考察了掺杂浓度(物质的量分数)对材料发光强度的影 响。通过对比2种锰掺杂材料的发光行为,发现在掺杂浓度相同的条件下,K₃ZrF₇:Mn⁴⁺的发光强度是K₂ZrF₆:Mn⁴⁺的10倍多。 通过对二者晶体结构和掺杂离子配位环境进行分析,从晶体场理论的角度解释了发光强度差异机制。

关键词: 红色荧光粉; 锰掺杂; 溶剂热法 中图分类号: TQ617.3; O614.71*1 文献标识码: A 文章编号: 1001-4861(2020)09-1620-05 DOI:10.11862/CJIC.2020.184

Solvothermal Synthesis and Luminescence Property of K₃ZrF₇: Mn⁴⁺ Red Phosphors

ZHAO Chun-Mei¹ NING De-Peng² LI Xue-Yan² JI Yin-Hao¹ WEN Ting^{*,2}

(¹School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou 450044, China) (²Institute of Nano-Structured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China)

Abstract: K_3ZrF_7 was prepared by solvothermal method, and Mn^{4+} was doped by ion-exchange method to obtain high intensity red phosphors. The structures and morphologies of the materials were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that pure K_3ZrF_7 can be obtained efficiently with oleylamine as solvent under anhydrous condition. When oleylamine is replaced with water, pure K_2ZrF_6 can be prepared successfully. The effect of doping concentration(molar fraction) of Mn^{4+} on PL intensity of the materials was also investigated. By comparing the luminescence behavior of two Mn^{4+} doped materials, it was found that the PL intensity of K_3ZrF_7 : Mn^{4+} was more than 10 times higher than that of K_2ZrF_6 : Mn^{4+} with the same doping concentration. The mechanism of luminescence intensity difference can be explained by crystal field theory. It is known that the crystal structure and coordination environment of doped ion are very important to PL intensity of materials. We consider that the higher PL intensity of K_3ZrF_7 : Mn^{4+} may be relative to its larger asymmetry of local crystal field.

Keywords: red phosphor; manganese doped; solvothermal method

近几十年来,发光二极管(LEDs)在制备和应用 方面发展迅速。白光LED由于具有效率高、使用寿 命长、材料稳定性好和环境友好等优点而备受研究 者的青睐,也被认为是代替传统固态照明的最佳选 择。目前工艺成熟且应用广泛的白光LED是由蓝 光LED芯片激发黄色荧光粉钇铝石榴石Y₃Al₅O₁₂ (YAG)获得白光的,但由于缺少红光成分,存在色温 偏高、显色指数低等缺点,极大地制约了LED照明 的推广应用¹¹¹。红色荧光粉作为构成暖白光LED荧 光粉的组分,对于降低LED的色温,改善使用舒适

收稿日期:2019-12-21。收修改稿日期:2020-04-08。

河南省教育厅自然科学基金(No.153PKJGG139)、河南省高等学校重点科研项目(No.20A150042)和郑州市科技计划重点项目 (No.153PKJGG139)资助。

^{*}通信联系人。E-mail:tingwen@infm.hhstu.edu.cn

度具有重要的现实意义。因而,用简单有效的方法 制备高性能的红色荧光粉成为优化白光LED发光 性能的关键。

目前新型红色发光材料主要包括稀土激活的 硫化物、钼酸盐、钨酸盐、氮化物和量子点,但都存 在一定的局限性^[24]。Mn⁴⁺在很多红色荧光粉中可充 当优异的红光发射中心。Mn⁴⁺离子的激发波长为 450 nm 左右,符合白光 LED 的激发条件;其发射峰 位在 630 nm 附近,属于红光范畴。更重要的是,与 稀土荧光粉相比,锰基红色荧光粉制备成本低,有 利于大规模生产应用^[8-9]。另一方面,锆氟化物的组 成及结构具有多样性,便于研究基质材料的晶体结 构与其发光性能之间的关系。因此,高效地制备 Mn⁴⁺掺杂的锆氟化物具有重要的理论和现实意义。

本工作利用溶剂热法制备单相的 K_3ZrF_7 ,并对 其进行 Mn^{4+} 掺杂。通过对 K_3ZrF_7 : Mn^{4+} 和 K_2ZrF_6 : Mn^{4+} 的荧光性能进行分析,确定了 Mn^{4+} 在 2 种基质 材料中的最佳掺杂浓度,获得了发光强度较高的红 色荧光粉。另外,还对比研究了 K_3ZrF_7 : Mn^{4+} 和 K_2ZrF_6 : Mn^{4+} 的发光性能,并对其发光强度差异机制 进行了分析。

1 实验部分

1.1 试剂和仪器

二氧化锆(ZrO₂)、氢氧化钾(KOH)、无水氟化钾 (KF)、高锰酸钾(KMnO₄)、油胺、无水乙醇、双氧水均 为分析纯试剂;氢氟酸的纯度不小于40%。实验用 水为去离子水。

采用德国布鲁克 D8 Advance X 射线衍射仪测 试样品的物相结构, Cu Kα为辐射源(λ=0.154 05 nm),工作电压为40 kV,工作电流为40 mA,扫描范 围为5°~90°。样品的形貌由 FEI Quanta 250 FEG 扫 描电子显微镜(美国 FEI 公司)进行表征。样品的荧 光光谱在室温下由 F-4600荧光光谱仪(日本 Hitachi 公司)测得,激发波长为470 nm,扫描范围为580~ 670 nm。

1.2 实验方法

1.2.1 K₃ZrF₇和K₂ZrF₆的制备

K₃ZrF₇的制备:将KOH(0.224 g,4 mmol)加入油 胺(4.0 mL)和无水乙醇(6.0 mL)的混合物中,加热溶 解。把氢氟酸(1.5 mL)和ZrO₂(0.246 g,2 mmol)的混 合物逐滴加入到上述溶液中,搅拌均匀后转移至反 应釜,在190℃下反应10h后冷却至室温。离心并 用无水乙醇洗涤3次后烘干(70℃)即得目标产物。

参照K₃ZrF₇的制备条件,用水代替油胺,即可获 得K₂ZrF₆单相产物。

1.2.2 K₂MnF₆的制备

称取 KF(7.2 g, 123.9 mmol)和 KMnO₄(0.4 g, 2.5 mmol)于塑料烧杯中,加入氢氟酸(30.0 mL),搅拌溶解。逐滴加入双氧水(400 μ L),溶液由紫色慢慢变为透明清亮的浅棕色,并出现大量的黄色沉淀。经离心(6 000 r·min⁻¹, 5 min)、洗涤后烘干(70 °C)可得到黄棕色粉末。

1.2.3 Mn⁴⁺的掺杂

称取 K₂ZrF₆(0.283 4 g, 1.0 mmol)于塑料烧杯中, 按计量比加入 K₂MnF₆,在快速搅拌的条件下向该混 合物中滴加氢氟酸(250 μ L),搅拌均匀后烘干(70 ℃) 得到掺杂浓度(物质的量分数)分别为0.7%、1%、5% 和 10% 的 K₂ZrF₆。用同样的方法对 K₃ZrF₇进行 Mn⁴⁺ 掺杂,掺杂浓度分别为0.02%、0.1%、0.5%、1% 和 5%。

2 结果与讨论

2.1 基质材料K₃ZrF₇的合成

将氢氟酸、二氧化锆和氢氧化钾以无水乙醇为 媒介溶解在高沸点溶剂油胺中,在190℃下获得了 K₃ZrF₇白色粉末。XRD图分析显示所得产物为立方 相(*Fm*3*m*)。

在合成K₃ZrF₇的过程中,我们发现水在反应过 程中起着至关重要的作用。在无水条件下可获得 纯相K₃ZrF₇;当反应体系中含有少量水分时生成 K₃ZrF₇和K₂ZrF₆的混合物;当以水为溶剂时,相同条 件下获得了单斜相K₂ZrF₆(图1)。因此,在这一溶剂

⁽A) Containing little water in system; (B) Aqueous system;(C) Anhydrous system

图1 不同条件下所制备的基质材料的XRD图

Fig.1 XRD patterns of the obtained the matrix materials prepared under different conditions

热反应体系中,可以通过简单地改变反应溶剂分别获得纯相K₂ZrF₆和K₃ZrF₇基质材料。

用扫描电子显微镜(SEM)对K₃ZrF₇的形貌进行 表征,如图2所示,所获得产物的粒径主要分布在微 米量级。用能量色散谱(EDS)对材料成分进行了分 析,结果显示材料由K、Zr和F三种元素组成,它们 的含量分别为27.27%、9.33%和63.40%(n/n),它们 的物质的量之比约为3:1:7,符合K₃ZrF₇的元素组 成比例。

图 2 K₃ZrF₇的扫描电镜照片 Fig.2 SEM images of K₃ZrF₇

2.2 K₂MnF₆的结构表征

以无水 KF 和 KMnO₄为原料,在氢氟酸和双氧

图 3 K₂MnF₆的 XRD 图

Fig.3 $\,$ XRD pattern of $K_2 MnF_6$

水的共同作用下制备 K₂MnF₆。为了确定其结构和 纯度,我们对样品进行了 XRD 表征。由图 3 可以看 出,样品的特征峰与标准卡片 PDF No.76273-ICSD 基本一致,说明所制备的样品为单相 K₂MnF₆。

2.3 K₃ZrF₇的Mn⁴⁺掺杂

为了研究 Mn^{4+} 掺杂浓度对材料发光强度的影响,我们以自制的 K_2MnF_6 为锰源,用离子交换法对 K_3ZrF_7 进行掺杂,获得掺杂浓度分别为 0.02%、 0.1%、0.5%、1%和5%的 K_3ZrF_7 : Mn^{4+} 样品。为了阐明发光机制,我们制备了 K_2ZrF_6 : Mn^{4+} 作为对比研究的参照样品。XRD 结果表明在 K_3ZrF_7 : Mn^{4+} 中除主物相 K_3ZrF_7 外,还含有少量的 K_2ZrF_6 (图 4A,标星号部分),这可能是离子交换过程中不可避免引入的微

图 4 不同 Mn⁴⁺掺杂浓度的 K₃ZrF₇ (A)和 K₂ZrF₆ (B)的 XRD 图

Fig.4 XRD patterns of K₃ZrF₇ (A) and K₂ZrF₆ (B) with different doping concentrations of Mn⁴⁺

量水造成的。 $K_2 Zr F_6$ 掺杂后的物相没有明显的变化 (图 4B)。

2.4 K₃ZrF₇:Mn⁴⁺的发光性质

我们以470 nm 蓝光激发锰掺杂后的 K₃ZrF₇和 K₂ZrF₆,分别对二者的发光性质进行了表征(图5)。 由图 5A、B 可以看出,K₃ZrF₇:Mn⁴⁺的最大发射峰位 在 632 nm 处,Mn⁴⁺掺杂浓度为 1% 时发光强度达到 最大值。而 K₂ZrF₆:Mn⁴⁺的发光中心位于 634 nm 处, 与 K₃ZrF₇:Mn⁴⁺相仿,最大发光强度对应的 Mn⁴⁺掺杂 浓度同样为 1%(图 5C 和 5D)。但是,K₃ZrF₇:1%Mn 的发光强度比 K₂ZrF₆:1%Mn 高一个数量级。这充 分说明 K₃ZrF₇是比 K₂ZrF₆更优越的锰掺杂红色荧光 基质材料。

对光谱形态的分析结果表明,图5中630 nm附近的发射峰归属的能级跃迁为 ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}^{[10-13]}$ 。过渡

金属离子发光受晶体场影响很大,不同的离子配位 环境会造成发光峰位和相对强度的不同。如图6所 示,在单斜相K₂ZrF₆中,Zr⁴⁺离子周围围绕着8个F⁻ 离子,配位形成扭曲的四方反棱柱多面体,较多的 配位阴离子有规律地交错占位,各阴离子对中心离 子作用力形成制衡,相对降低了Zr⁴⁺的局域环境的 不对称性。K₃ZrF₇中Zr⁴⁺离子与周围的7个F离子 形成扭曲的五角双锥构型^[14-16],而这种排布与K₂ZrF₆ 中八配位Zr-F相比,使掺杂Mn⁴⁺离子配位环境对称 性更低。研究表明,Mn⁴⁺掺杂的氟化物的荧光发射 强度与Mn⁴⁺所处的局域晶体场对称性直接相关。 基质材料的晶体场扭曲程度越大,Mn⁴⁺掺杂相应基 质的发射峰越强^[17]。因此,可以认为在K₃ZrF₇:Mn⁴⁺ 中局域配位环境中较低的对称性使之与K₂ZrF₆: Mn⁴⁺相比具有更强的发光强度。

Fig.5 Emission spectra of K_3ZrF_7 with different Mn doping concentrations (A) and the emission intensity at 632 nm as a function of doping concentration (B); Emission spectra of K_2ZrF_6 with different Mn doping concentrations (C) and the emission intensity at 634 nm as a function of doping concentration (D)

图 6 K₃ZrF₇和K₂ZrF₆中的配位多面体 Fig.6 Coordination polyhedron in K₃ZrF₇ and K₂ZrF₆

3 结 论

在无水体系中用溶剂热法成功合成了单相 K₃ZrF₇,且发现反应体系是否含水对产物的结构产 生重要影响。用离子交换法制备了不同 Mn^{4+} 掺杂浓度的 K_3ZrF_7 和 K_2ZrF_6 ,锰掺杂浓度为1.0%时2种材料的发光强度均达到最大值,而 K_3ZrF_7 :1%Mn的发光强度是 K_2ZrF_6 :1%Mn的10倍多,这可能是因为

无

K₃ZrF₇和K₂ZrF₆中Zr⁴⁺离子配位对称性的差异造成 的。以上结果说明本工作所制备的目标产物K₃ZrF₇ 是比K₂ZrF₆更优越的锰掺杂红色荧光基质材料。

参考文献:

- WU Xian-Jun(吴宪君), XU Jia-Yue(徐家跃), ZHANG Yan (张彦). Journal of Synthetic Crystals(人工晶体学报), 2014, 43(10):2611-2614
- [2] Li K, Lian H Z, Deun R V, et al. Dyes Pigment., 2019,162: 214-221
- [3] Yang Z Y, Yang Z F, Wei Q W, et al. J. Lumin., 2019,210: 408-412
- [4] Cao R, An C S, Tian L H, et al. J. Lumin., 2019,210:66-69
- [5] Chuang P H, Lin C C, Liu R S. ACS Appl. Mater. Interfaces, 2014,6(17):15379-15387
- [6] ZHANG Yan(张艳), GONG Hui-Li(宫慧丽), SHI Shi-Kao(石 土考), et al. Chinese J. Inorg. Chem. (无机化学学报), 2009, 25(3):563-566
- [7] CAO Fa-Bin(曹发斌), TIAN Yan-Wen(田彦文), CHEN Yong-Jie(陈永杰). Journal of Zhengzhou University: Engineering

Science(郑州大学学报:工学版), 2009,30(1):115-119

报

- [8] Setlur A A, Lyons R J, Murphy J E, et al. ECS J. Solid State Sci. Technol., 2013,2(2):R3059-R3070
- [9] Lin C C, Meijerink A, Liu R S. J. Phys. Chem. Lett., 2016,7 (3):495-503
- [10]Tan H Y, Rong M Z, Zhou Y Y, et al. Dalton Trans., 2016,45 (23):9654-9660
- [11]Kasa R, Adachi S. J. Appl. Phys., 2012,112(1):013506
- [12]Zhu H M, Lin C C, Luo W Q, et al. Nat. Commun., 2014,5: 4312-5312
- [13]LIU Man-Man(刘曼曼), GENG Ai-Fang(耿爱芳), YAN Jing-Hui(闫景辉), et al. Chinese J. Inorg. Chem.(无机化学学报), 2019,35(9):1593-1601
- [14]Hurst H J, Taylor J C. Acta Crystallogr. Sect. B, 1970, B26 (12):2136-2137
- [15]Hurst H J, Taylor J C. Acta Crystallogr. Sect. B, 1970,B26(4): 417-421
- [16]Voita E I, Didenkoa N A, Galkin K N. Opt. Spectrosc., 2015, 118(1):114-124
- [17]ZHOU Ya-Yun(周亚运), WANG Ling-Yan(王玲燕), DENG Ting-Ting(邓婷婷), et al. Scientia Sinica: Technologica(中国 科学:技术科学), 2017,47(11):1111-1125