类姜黄素-芳基钌配合物的合成、结构和光照激活抗癌活性

蒋宪涛¹ 王晓辉¹ 李培源^{*,2} 苏 炜^{*,1} ('南宁师范大学,广西天然高分子化学与物理重点实验室,南宁 530001)

(2广西中医药大学药学院,南宁 530001)

摘要:合成了3种含姜黄素衍生物(L¹~L³)和1,3,5-三氮杂-7-磷金刚烷(PTA)配体的芳基钌配合物[(η⁶-p-cymene)Ru(L)(PTA)]PF₆ (1~3,L=L¹~L³),通过X射线单晶衍射、核磁共振波谱、高分辨质谱、元素分析等方法表征了这些配合物的结构,并用MTT法研究 了它们在λ>400 nm的光照辅助下对HepG2人肝癌细胞的增殖抑制活性。结果表明,这3个配合物均为半三明治型结构;光辅 助下,配合物抗癌活性明显提高,其中配合物3对HepG2细胞的IC₅₀值从(60.3±1.1) μmol·L⁻¹降低至(45.0±6.1) μmol·L⁻¹。说明 光照可以有效提高此类配合物的抗肿瘤活性。

关键词:芳基钌配合物;类姜黄素;抗癌活性;晶体结构
中图分类号:0614.82⁺¹
文献标识码:A
文章编号:1001-4861(2021)03-0431-06
DOI:10.11862/CJIC.2021.047

Synthesis, Structure and Photoactivated Anticancer Activity of Ruthenium-Arene Complexes with Curcuminoids

JIANG Xian-Tao¹ WANG Xiao-Hui¹ LI Pei-Yuan^{*,2} SU Wei^{*,1}

(¹Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China) (²College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China)

Abstract: Three ruthenium-arene complexes with curcuminoids $(1\sim3)$ were synthesized through the reaction of $[(\eta^6 - p\text{-cymene})\text{RuCl}_2]_2$ and the corresponding curcuminoids derivative $(L^1\sim L^3)$ followed by the reaction with 1,3,5-tiaza-7-phosphaadamantane (PTA). The complexes were structurally characterized by single crystal XRD, ¹H NMR, MS and elemental analysis. The inhibitory activities of the complexes towards HepG2 human liver cancer cell lines were investigated by MTT with light (λ >400 nm). The results show that three complexes present half-sandwich structure. Anticancer activity of the complexes was significantly improved by light, among which the IC₅₀ of complex **3** decreased from (60.3±1.1) µmol·L⁻¹ to (45.0±6.1) µmol·L⁻¹ against HepG2, indicating that light can effectively improve the anticancer activity of this kind of complexes. CCDC: 1514601, **1**; 1514600, **2**; 1514603, **3**.

Keywords: ruthenium-arene complexes; curcuminoids; anticancer activity; crystal structure

0 引 言

近年来,金属有机配合物因其对不同癌细胞的 特异性活性以及良好的细胞毒性而成为科研工作 者的研究热点^[1-2]。其中,钌离子由于其多变的氧化 态,在生命体内可以像铁离子一样进入代谢循环, 几乎不显毒性,因此钌配合物成为非常有应用潜力 的新型抗癌药物^[3]。例如[HIm][*trans*-RuCl₄(DMSO) (Im)](NAMI-A)和[ImH][*trans*-RuCl₄(Im)₂](KP1019)已 经成功进入抗肿瘤临床试验^[46]。此外,分子式为[(η⁶

收稿日期:2020-06-15。收修改稿日期:2020-11-01。

国家自然科学基金(No.21761006,51961009)、广西自然科学基金(No.2018GXNSFAA281345,2017GXNSFAA198335)和广西"八桂学者" 项目资助。

^{*}通信联系人。E-mail:suwmail@163.com,lipearpear@163.com

-arene)Ru(X)(Y)(Z)]的半三明治型芳基钌配合物由于 其特殊的分子构型及其在抗癌研究中的作用,也引 起了越来越多的关注。如Sadler课题组报道的[(η⁶bip)Ru(en)Cl]PF₆(en=乙二胺)表现出优异的肿瘤细胞 抑制活性^[7-8], Dyson课题组报道的[(η⁶-cymene) Ru(PTA)Cl₂](PTA=1,3,5-三氮杂-7-磷金刚烷)则表现 出良好的抗转移活性^[9-10]。在这些配合物中,配体 X、Y和Z的性质和结构对配合物的抗癌活性起着至 关重要的作用^[11-16]。

作为一类β-二酮配体,姜黄素及其衍生物(curcuminoids,Curc)以其抗炎、抗菌和抗肿瘤等广谱的 生物活性而受到人们的广泛关注^[17]。Caruso课题组 报道了系列含类姜黄素配体的芳基钌配合物[(η⁶cymene)Ru(Curc)Cl],并发现这些配合物对肿瘤细胞 有很好的抑制活性^[18]。Dyson课题组在芳基钌-类姜 黄素配合物中引入PTA配体,获得了具有良好抗癌 选择性的芳基钌配合物[(η⁶-cymene)Ru(Curc)(PTA)] PF₆^[19]。此外,类姜黄素及金属配合物的光谱和光化 学性质具有一个重要特性:在波长为410~430 nm的 光谱有强烈的吸收^[20]。这一特性使得此类化合物具 备光敏性,可利用光照来增强其抗癌活性^[21]。 Kondaiah课题组报道了含姜黄素配体的铂配合物 [Pt(Curc)(NH₃)₂]NO₃,其在光照下细胞毒性比避光条 件下提高13倍^[22]。Renfrew 课题组报道了一系列可 在有氧和无氧环境下激活的含姜黄素配体的钴配 合物,其细胞光毒性比避光条件下提高20倍^[23]。为 了延续本课题组先前对芳基钌-类姜黄素配合物的 探索,我们合成了3种新型的芳基钌-类姜黄素-PTA 配合物^[24],通过核磁共振、质谱、单晶衍射等方法表 征了它们的结构,通过MTT法研究其抗癌活性,并 利用光照对其细胞光毒性进行了研究。

1 实验部分

1.1 试剂与仪器

实验所用溶剂均采用国产分析纯试剂并在使用前进行纯化。[(p-cymene)RuCl₂]₂和其他试剂购自百灵威试剂公司,类姜黄素配体(L¹~L³)均通过文献方法制备^[24]。¹H NMR采用Bruker AV-600(德国)核磁共振波谱仪以 600 MHz 的频率测定;HR-ESI-MS 使用Waters UPLC XEVO G2 TOF 质谱仪测定;C、H、N元素分析使用 Elementar Vario EL Cube 元素分析仪测定;UV-Vis使用 Cary 100 紫外可见分光光度计(澳大利亚安捷伦科技有限公司)测定;荧光光谱使用 Thermo 荧光光谱仪(美国)测定;单晶结构使用Bruker SMART CCD X 射线单晶衍射仪测定。

1.2 配合物1~3的合成

配合物1~3的合成过程如Scheme1所示。

1.2.1 配合物[(η⁶-p-cymene)Ru(L¹)(PTA)]PF₆ (1)的 合成

将[$(\eta^{6}$ -*p*-cymene)RuCl₂]₂(31 mg,0.05 mmol)、配体 L¹(27.6 mg,0.1 mmol)和NaOEt(10.2 mg,0.15 mmol)溶 解在 6 mL 乙醇中。室温搅拌 2 h,加入 AgPF₆(25.7 mg,0.1 mmol)后继续搅拌 2 h。过滤以除去 AgCl沉 淀,在滤液中加入 PTA(15.7 mg,0.1 mmol),室温搅拌 24 h,析出暗红色固体,通过 CH₂Cl₂/正己烷重结晶进 行进一步纯化(50.0 mg,产率 62%)。元素分析(%,括 号 内 为 按 C₃₅H₄₁F₆N₃O₂P,Ru·1/4CH,Cl, 计 算 值): C 50.94(50.77), H 4.99(5.02), N 5.04(5.04)。 ¹H NMR (600 MHz, DMSO - d₆): δ 7.685(d, *J*=6.0 Hz, 4H), 7.477~7.425(m, 8H), 6.903(d, *J*=16.2 Hz, 2H), 6.133 (dd, *J*=32.4, 5.4 Hz, 4H), 5.950(s, 1H), 4.474(dd, *J*= 28.8, 12.6 Hz, 6H), 4.138(s, 6H), 2.690(dd, *J*=13.8, 6.6 Hz, 1H), 2.038(s, 3H), 1.300(d, *J*=6.6 Hz, 6H)。 HR-ESI-MS(DMSO): [1-PF₆⁻]⁺ *m/z* 实测值(理论值): 668.199 8(668.199 0)。

[Ru(η⁶-p-cymene)(L²)(PTA)]PF₆(2)的合成
 合成步骤同1。产量56 mg,产率66%。元素分

析(%,括号内为按 $C_{35}H_{39}F_8N_3O_2P_2Ru \cdot H_2O$ 计算值):C 48.55(48.50),H 4.89(4.77),N 4.99(4.85)。¹H NMR (600 MHz, DMSO-d₆): δ 7.766(dd, J=8.4, 5.4 Hz, 4H), 7.440(d, J=16.2 Hz, 2H), 7.300(t, J=9.0 Hz, 4H), 6.861 (d, J=15.9 Hz, 2H), 6.123(dd, J=28.8, 5.4 Hz, 4H), 5.903(s, 1H), 4.447(q, J=26.4, 12.6 Hz, 6H), 4.128(s, 6H), 2.683~2.637(m, 1H), 2.028(s, 3H), 1.289(d, J=6.6 Hz, 6H)。HR-ESI-MS(DMSO): [1-PF_6^-]+ m/z 实测值 (理论值): 704.179 6(704.180 1)。

1.2.3 [Ru(η⁶-p-cymene)(L³)(PTA)]PF₆ (3)的合成

合成步骤同1。产量43 mg,产率49%。元素分 析(%,括号内为按C₃₇H₄₅F₆N₃O₄P₂Ru·5/4H₂O计算值): C 49.50(49.64), H 5.10(5.35), N 4.92(4.69), ¹H NMR (600 MHz, DMSO-d₆): δ 7.631(d, J=6.4 Hz, 4H), 7.409 (d, J=15.6 Hz, 2H), 7.016(d, J=9.0 Hz, 4H), 6.742(d, J =15.6 Hz, 2H), 6.133(dd, J=34.2, 5.4 Hz, 4H), 5.845 (s, 1H), 4.440(q, *J*=22.8, 12.6 Hz, 6H), 4.120(s, 6H), 3.819(s, 6H), 2.687~2.641(m, 1H), 2.030(s, 3H), 1.293 (d, *J*=6.6 Hz, 6H)。HR-ESI-MS(DMSO):[$1-PF_6^{-}$]⁺ *m/z* 实测值(理论值):728.220 1(728.220 2)。

1.3 结构测定

配合物 1~3 的单晶测试是在 293 K下用石墨单 色化 Mo Kα射线(λ=0.071 073 nm)于单晶衍射仪上, 进行衍射点数据收集。利用直接法解出结构,并混 合加氢,氢原子采用各向同性热参数。非氢原子采 用各向异性热参数。结构经全矩阵最小二乘法修 正,用 SHELXL2016^[25-26]和 OLEX.2 程序包分别进行 晶体结构解析和结构修正。配合物 1~3 的单晶结构 数据见表 1,配合物 1~3 的部分键长、键角数据 见表 2。

CCDC:1514601,1;1514600,2;1514603,3°

Complex	1	2	3	
Formula	$\mathrm{C}_{35}\mathrm{H}_{41}\mathrm{F}_{6}\mathrm{N}_{3}\mathrm{O}_{2}\mathrm{P}_{2}\mathrm{Ru}$	$C_{35}H_{39}F_8N_3O_2P_2Ru$	$C_{37}H_{45}F_6N_3O_4P_2Ru$	
Formula weight	812.72	848.70	875.79	
Crystal system	Monoclinic	Monoclinic	Triclinic	
Space group	C2/c	C2/c	$P\overline{1}$	
<i>a</i> / nm	1.961 6(9)	2.623 1(12)	1.328 5(3)	
<i>b</i> / nm	1.762 2(9)	1.753 4(12)	1.333 6(3)	
<i>c</i> / nm	2.203 5(11)	1.934 5(13)	1.350 2(3)	
α / (°)			104.806(3)	
β / (°)	101.27(5)	124.681(14)	118.462(3)	
γ / (°)			91.598(3)	
V / nm^3	7.470(6)	7.317(8)	2.001 3(8)	
Ζ	8	8	2	
$D_{\rm c} / ({\rm g} \cdot {\rm cm}^{-3})$	1.445	1.541	1.453	
<i>F</i> (000)	3 328	3 456	902	
θ range / (°)	2.54~52.58	3~50.06	3.2~50.7	
Reflection collected	42 927	38 967	20 475	
Reflection independent	7 343	6 465	7 289	
GOF	1.147	1.032	1.078	
$R_1, wR_2 \left[I {\geq} 2\sigma(I)\right]$	0.079 3, 0.236 5	0.037 0, 0.100 6	0.056 5, 0.135 3	
$R_{\cdot,\cdot} wR_{\circ}$ (all data)	0.096 0. 0.263 3	0.043 9. 0.108 0	0.073 4, 0.153 7	

表1 配合物1~3的晶体数据 Table 1 Crystal data collection for 1~3

表2 配合物1~3的键长(nm)和键角(°)

Table 2 Selected bond lengths (nm) and angles (°) in complexes 1~3 $\,$

Complex	1	2	3
Ru1-centroid	0.170 71(9)	0.173 31(8)	0.170 95(3)
Ru1—P1	0.231 7(2)	0.231 7(12)	0.232 6(12)

434		无 机 化	学 学 报	第37卷
	续表1			
	Ru1-01	0.206 7(4)	0.207 4(2)	0.205 6(3)
	Ru1-02	0.207 6(4)	0.207 6(2)	0.207 0(3)
	01—C2	0.127 2(7)	0.127 3(4)	0.129 3(6)
	O2—C2′	0.127 0(7)	0.128 1(4)	0.128 8(6)
	C1—C2	0.140 8(14)	0.149 5(6)	0.150 0(7)
	C1—C2′	0.140 0(12)	0.141 5(5)	0.141 4(7)
	01—Ru1—02	88.76(16)	88.90(1)	87.83(13)
	O1—Ru1—P1	85.77(14)	86.15(7)	86.71(1)
	02—Ru1—P1	85.95(13)	86.06(7)	85.70(9)

1.4 配合物的抗癌活性

本研究所使用的人肝癌细胞(HepG2)来自广西 医科大学实验中心。细胞在含10%的血清培养基 RPMI-1640中生长。用MTT法测定配合物对癌细胞 体外抗增殖活性:取对数期生长的癌细胞,配成细 胞悬液,加入96孔板,每孔(200 μL)1×10⁴~3×10⁴个 细胞,置培养箱内培养24 h;采用MTT法,每孔加入 1 μL不同浓度的药物,控制药物终浓度分别为10、 20、30、50、60、80 μmol·L⁻¹,在培养箱中培养4 h后, 癌细胞在λ>400 nm,功率密度为30 mW·cm⁻²的条 件光照30 min,继续在培养箱中培养24 h。每孔加 入20 μL(5 mg·mL⁻¹) MTT,再置于培养箱中培养4 h, 吸掉上清液,每孔加入100 μL的DMSO,置于摇床 上低速震荡,10 min后使用酶标仪上测量492 nm波 长处OD值。每种药物重复3次实验,每次做3个复 孔。计算配合物对癌细胞的IC₅₀值。

2 结果与讨论

2.1 合成与表征

配合物 1~3 均采用相同的方法合成:在室温下 将[(η^{6} -*p*-cymene)RuCl₂]₂与相应的类姜黄素配体反应 后,加入AgPF₆除去 Cl⁻,再加入 PTA 进一步反应合 成得到。用核磁共振波谱、高分辨质谱、元素分析 等手段对 1~3 进行了表征。其中,高分辨质谱实验 测得配合物 1~3 的 *m*/*z* 峰值分别为 668.199 8、 704.179 6和 728.220 1,相对应的正离子分别为[(η^{6} -*p*-cymene)Ru(L¹)(PTA)]⁺、[(η^{6} -*p*-cymene)Ru(L²)(PTA)]⁺和 [(η^{6} -*p*-cymene)Ru(L³)(PTA)]⁺,与配合物 1~3 的阳离子 相吻合。

将配合物1~3 配成浓度为20 μmol·L⁻¹的DMSO 溶液,研究其UV-Vis光谱。从图1可以看到,这些 配合物在310~510 nm区域有明显的吸收,该吸收峰 主要归因于配体以及金属-配体电荷转移 ('MLCT)^[27]。配合物1和2的吸收光谱相似,其最大 吸收峰位于375 nm,配合物3的最大吸收峰位于 411 nm,相对于1和2明显红移。这是由于配体L³ 端位上的供电子基团OCH₃导致。

图 1 配合物 **1~3**在 DMSO 中的紫外可见吸收光谱图 Fig.1 UV-Vis spectra for complexes **1~3** in DMSO

2.2 配合物的晶体结构

配合物 1~3 的单晶结构如图 2~4 所示。配合物 1和2属于单斜晶系的 C2/c空间群,配合物3的晶体 属于三斜晶系 Pī空间群。3个配合物具有相似结 构,其中心金属钌(II)离子与甲基异丙基苯配体中的 苯环以 η⁶形式配位,与类姜黄素配体以O,O螯合 配位,与 PTA 配体中的 P 原子以单齿配位,形成六 配位八面体结构的一价阳离子。甲基异丙基苯配 体中的苯环中心与钌离子之间的距离分别为0.170 71(9)、0.173 31(8)、0.170 95(3) nm。另外 3 个配位键 键长为 Ru1—P1 0.231 7~0.232 6 nm、Ru1—O1 0.205 6~0.206 7 nm、Ru1—O2 0.207 0~0.207 6 nm, 表明 3 个配合物的结构非常相似。C1—C2和C1— C2'的键长在 0.140 8~0.150 0 nm 范围,该长度处于 单键键长和双键键长之间,这是由配体中β-二酮的 部分形成去质子化螯合配体后主要以(--O--C--C---O--)形式共振而导致。围绕金属钌离子的键角为 O1--Ru1--O2 87.83°~88.76°、O1--Ru1--P1 85.77°~86.71°、O2--Ru1--P1 85.95°~86.06°,与之前

图2 配合物1的30%概率椭球晶体图

Fig.2 ORTEP of 1 with thermal ellipsoids probability of 30%

Fig.3 ORTEP of 2 with thermal ellipsoids probability of 30%

图 4 配合物 3 的 30% 概率椭球晶体图 Fig.4 ORTEP of 3 with thermal ellipsoids probability of 30%

报道的类似配合物数值接近[24]。

2.3 配合物的细胞活性测试

类姜黄素-芳基钌配合物1~3对HepG2人肝癌 细胞的体外抗肿瘤活性见表3。结果显示,在避光 条件下,配合物1和2对HepG2细胞均未表现出抗 肿瘤活性,配合物3对HepG2细胞表现出一定抗肿 瘤活性,IC₅₀值为(60.3±1.1) μmol·L⁻¹。显然,相对于 吸电子基团(配合物1和2中的H和F原子),类姜黄 素配体端位的供电子基团(配合物3中的—OCH₃)对 此类配合物的HepG2细胞增殖抑制活性影响更为 正面。使用 λ >400 nm的光照射 30 min 后, 配合物 1 仍未显示出抗肿瘤活性,但配合物2和3对HepG2 细胞的增殖抑制活性得到明显提高,其ICso值分别 降低为(60.1±1.0) µmol·L⁻¹和(45.0±6.1) µmol·L⁻¹。 这说明利用光照作用,可以有效提高类姜黄素-芳 基钌配合物的抗肿瘤活性,这可能是由于配合物在 光照后产生活性氧[22],从而提高了配合物的细胞毒 性。因此,虽然这3个配合物对HepG2细胞的增殖 抑制活性较为温和,但是本研究对于此类配合物的 构效关系研究和提高其使用效率具有一定的参考 价值。

表 3 配合物 1~3 对人肝癌细胞(HepG2)的 IC₅₀值 (λ>400 nm)

Table 3 IC₅₀ values (λ>400 nm) of 1~3 against HepG2 cancer cell lines

Complex	$\frac{\mathrm{IC}_{50,\;\mathrm{dark}}}{(\mu\mathrm{mol}\boldsymbol{\cdot}\mathrm{L}^{-1})}$	$\frac{\mathrm{IC}_{50,\mathrm{light}}/}{(\mu\mathrm{mol}\boldsymbol{\cdot}\mathrm{L}^{-1})}$	PI*	
1	>100	>100	—	
2	>100	60.1±1.0	1.7	
3	60.3±1.1	45.0±6.1	1.3	

* PI=IC_{50, dark}/IC_{50, light}

3 结 论

设计、合成了3种新型类姜黄素-芳基钌配合物 1~3。并通过单晶X射线衍射实验,对比研究了这3 个配合物的结构。在避光条件下,配合物1和2对 HepG2人肝癌细胞不显活性,而配合物3表现出一 定的活性,原因可能是相对于吸电子基团的H原子 和F原子,类姜黄素配体端位苯环上的供电子基 团—OCH₃更有利于配合物对HepG2细胞的增殖抑 制活性。光照后(λ>400 nm),除配合物1外,2和3对 HepG2细胞的增殖抑制活性都有明显提高,说明光 照可以有效提高此类配合物的抗肿瘤活性。本研 究为进一步设计合成新型高效抗癌芳基配合物提 供了一定的理论基础。

参考文献:

- [1] Murray B S, Babak M V, C G Hartinger, Dyson P. Coord. Chem. Rev., 2016.306:86-114
- [2] Furrer J, Süss-Fink G. Coord. Chem. Rev., 2016,309:36-50
- [3] 赵雅晨,李季,张培培,刘妹娴,魏代娜,苏志,钱勇,王飞利, Sadler PJ,刘红科.高等学校化学学报,2019,40(1):30-40
 ZHAO Y C, LI J, ZHANG P P, LIU S X, WEI D N, SU Z, QIAN Y, WANG F L, Sadler P J, LIU H K. Chem. J. Chinese Universities, 2019, 40(1):30-40
- [4] Thompson D S, Weiss G J, Jones S F, Burris H A, Ramanathan R K, Infante J R, Ogden A, von Hoff D D. J. Clin. Oncol., 2012,30(S15): Abstr. 3033
- [5] Kubanik M, Kandioller W, Kim K W, Anderson R F, Klapproth E, Jakupec M A, Roller A, Söhnel T, Keppler B K, Hartinger C G. Dalton Trans., 2016,45:13091-13103
- [6] Trondl R, Heffeter P, Kowol C R, Jakupec M A, Berger W, Keppler B K. Chem. Sci., 2014,5:2925-2932
- [7] Morris R E, Aird R E, Socorro P S, Chen H M, Cummings J, Hughes N D, Parsons S, Parkin A, Boyd G, Jodrell D I, Sadler P J. J. Med. Chem., 2001,44:3616-3621
- [8] Chen H M, Parkinson J A, Parsons S, Coxall R A, Gould R O, Sadler P J. J. Am. Chem. Soc., 2002,124(12):3064-3082
- [9] Scolaro C, Bergamo A, Brescacin L, Delfino R, Cocchietto M, Laurenczy G, Geldbach T J, Sava G, Dyson P J. J. Med. Chem., 2005, 48:4161-4171
- [10]Chatterjee S, Kundu S, Bhattacharyya A, Hartinger C G, Dyson P J. J. Biol. Inorg. Chem., 2008,13:1149-1155
- [11]Batchelor L K, Paunescu E, Soudani M, Scopelliti R, Dyson P J. Inorg. Chem., 2017,56(16):9617-9633

[12]Ma L L, Ma R, Wang Z G, Yiu S M, Zhu G Y. Chem. Commun., 2016,52(71):10735-10738

报

- [13]Prior T J, Savoie H, Boyle R W, Murray B S. Organometallics, 2018, 37(3):294-297
- [14]Caruso F, Pettinari R, Rossi M, Monti E, Gariboldi M B, Marchetti F, Pettinari C, Caruso A, Ramani M V, Subbaraju G V. J. Inorg. Biochem., 2016,162:44-51
- [15]Ma L L, Lin X D, Li C, Xu Z F, Chan C Y, Tse M K, Shi P, Zhu G Y. Inorg. Chem., 2018,57(5):2917-2924
- [16]Paunescu E, Soudani M, Martin P, Scopelliti R, Bello M L, Dyson P J. Organometallics, 2017,36(17):3313-3321
- [17]Lei X L, Su W, Li P Y, Xiao Q, Huang S, Qian Q Q, Huang C S, Qian D N, Lan H X. Polyhedron, 2014,81:614-618
- [18]Caruso F, Rossi M, Benson A, Opazo C, Freedman D, Monti E, Gariboldi M B, Shaulky J, Marchetti F, Pettinari R. J. Med. Chem., 2012, 55:1072-1081
- [19]Pettinari R, Pettinari C, Mahetti F, Clavel C M, Scopelliti R, Dyson P J. Organometallics, 2014,33(14):3709-3715
- [20]Banerjee S, Chakravarty A R. Acc. Chem. Res., 2015,48:2075-2083
- [21]Zhang J F, Liang Y C, Lin X D, Zhu X Y, Yan L, Li S L, Yang X, Zhu G Y, Rogach A L, Yu P K N, Shi P, Tu L C, Chang C C, Zhang X H, Chen Z F, Zhang W J, Lee C S. ACS Nano, 2015,9:9741-9756
- [22]Mitra K, Gautam S, Kondaiah P, Chakravarty A R. Angew. Chem. Int. Ed., 2015,54:13989-13993
- [23]Renfrew A K, Bryce N S, Hambley T. Chem. Eur. J., 2015,21:15224-15234
- [24]Li P Y, Su W, Lei X L, Xiao Q, Huang S. Appl Organometal Chem., 2017,31:e3685
- [25]Sheldrick G M. Acta Crystallogr. Sect. C, 2015,71:3-8
- [26]Sheldrick G M. Acta Crystallogr. Sect. A, 2008,64:112-122
- [27]Su W, Zhou Q, Huang Y M, Huang Q Y, Huo L N, Xiao Q, Huang S, Huang C S, Chen R, Qian Q Q, Liu L F, Li P Y. Appl. Organometal Chem., 2013,27:307-312