ZrCdO_x/SAPO-18双功能催化剂催化 CO₂加氢合成低碳烯烃性能

杨浪浪 孟凡会* 张 鹏 梁晓彤 李 忠*

(太原理工大学,煤科学与技术教育部和山西省重点实验室,太原 030024)

摘要:采用并流共沉淀法制备了不同Zr/Cd原子比(nz/ncd)的ZrCdO_x金属氧化物,并与水热法制备的不同硅铝比(n_{SiO2}/n_{Al2O3})的片 状SAPO-18分子筛物理混合制得ZrCdO_x/SAPO-18双功能催化剂,研究了其催化CO₂加氢直接合成低碳烯烃性能。采用透射电子显微镜(TEM)、X射线衍射(XRD)、N₂吸附-脱附、CO₂程序升温脱附(CO₂-TPD)、NH₃程序升温脱附(NH₃-TPD)和X射线光电子能 谱(XPS)对催化剂进行了分析。与单一ZrO₂相比,引入CdO使得ZrCdO_x比表面积下降,当n_z/n_{cd}=8时制备的Zr₈Cd₁氧化物呈现 出无定形小颗粒状,Zr与Cd之间较强的协同作用使得ZrCdO_x氧化物产生了更多的氧空位,有利于CO₂的吸附活化。通过对 Zr₈Cd₁金属氧化物与SAPO-18(硅铝比0.1)的质量比、工艺反应温度、压力和空速对催化性能影响的考察,获得了最佳反应条件。研究还发现,当SAPO-18的硅铝比从0.1降为0.01时,Brønsted酸含量降低,产物中烯烃/烷烃物质的量之比从18.6提高至37.2, 但副产物CO含量迅速增加,低碳烯烃时空收率明显下降。

关键词:二氧化碳;加氢;低碳烯烃;ZrCdO_x金属氧化物;分子筛
中图分类号:0643.3;0614
文献标识码:A
文章编号:1001-4861(2021)03-0448-09
DOI:10.11862/CJIC.2021.067

Catalytic Performance for CO₂ Hydrogenation to Light Olefins over ZrCdO,/SAPO-18 Bifunctional Catalyst

YANG Lang-Lang MENG Fan-Hui* ZHANG Peng LIANG Xiao-Tong LI Zhong*

(Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract: $ZrCdO_x$ metal oxides with various Zr/Cd atomic ratios (n_{Z_c}/n_{Cd}) were prepared by parallel coprecipitation method, the sheet-like SAPO-18 zeolites with molar ratio of SiO₂ to Al₂O₃ $(n_{siO_2}/n_{Al_2O_3})$ of 0.1 and 0.01 were hydrothermally synthesized. The metal oxide and SAPO-18 were physically mixed to prepare $ZrCdO_x/SAPO-18$ bifunctional catalyst, and to study the catalytic performance for CO₂ hydrogenation to light olefins. Transmission electron microscopy (TEM), X-ray diffraction (XRD), N₂ adsorption-desorption, temperature-programmed desorption of CO₂ (CO₂-TPD), temperature - programmed desorption of ammonia (NH₃ - TPD) and X-ray photoelectron spectroscopy (XPS) were applied to analyze the catalysts. Compared with the sole ZrO_2 , the introduction of CdO decreased the BET (Brunauer-Emmett-Teller) surface area of $ZrCdO_x$. The Zr_8Cd_1 oxide prepared with n_Z/n_{cd} =8 exhibited the small amorphous particles, the strong synergetic effect between Zr and Cd led to the generation of more oxygen vacancies in ZrCdO_x oxide, which was beneficial to the adsorption and activation of CO₂. The effect of mass ratio of Zr_8Cd_1 oxide to SAPO - 18 ($n_{siO_2}/n_{Al_2O_3}$ =0.1), and the reaction temperature, pressure and space velocity on catalytic performance were investigated, and the optimal reaction conditions were obtained. Moreover, it is also found that when the

山西省自然科学基金面上项目(No.201801D121056)和山西省重点研发计划(国际科技合作项目)(No.201803D421011)资助。

*通信联系人。E-mail:mengfanhui@tyut.edu.cn,lizhong@tyut.edu.cn

收稿日期:2020-09-10。收修改稿日期:2020-12-18。

第3期

ratio of $n_{\text{Si0}_2}/n_{\text{Al}_2\text{O}_3}$ decreased from 0.1 to 0.01, the content of Brønsted acid reduced, the molar ratio of olefins to paraffin increased from 18.6 to 37.2; however, the content of by-product CO increased rapidly, and the space-time yield of light olefins decreased remarkably.

Keywords: carbon dioxide; hydrogenation; light olefins; ZrCdO_x metal oxides; zeolites

0 引 言

以乙烯和丙烯为代表的低碳烯烃是化学工业的基本原料。将二氧化碳(CO₂)转化为低碳烯烃(C₂[±],即乙烯、丙烯和丁烯),既可解决环境污染问题,又可替代部分石油资源^[1-2]。目前,该技术已引起国内外学者的广泛关注^[3-4]。CO₂加氢合成低碳烯烃反应历程按中间体可分为:(1)合成甲醇和甲醇制烯烃(MTO)的CH₃OH中间体途径^[5-7];(2)通过逆水煤气变换反应(RWGS)和费托反应合成烯烃(FTO)的CO中间体途径^[8-9]。其中,CH₃OH中间体途径采用双功能催化剂,CO₂解离活化和碳链生长在2个不同的催化剂上完成,具有高的C₂[±]~C₄[±]选择性优势,该技术突破了FTO反应产物受Anderson-Schulz-Flory 模型分布限制。

CO₂加氢直接转化制低碳烯烃反应中双功能催 化剂由金属氧化物和酸性分子筛物理混合而成。 金属氧化物表面为CO₂和H₂提供解离与活化的场 所,酸性分子筛则主要用于C—C键耦合^[10]。目前用 于CO₂加氢制低碳烯烃反应的金属氧化物主要 有ZnZrO₃^[11]、ZnGa₂O₄^[12]、ZnAl₂O₄^[12]、InZrO_x^[13]、In₂O₃-ZnZrO_x^[14]和CuO-ZnO-ZrO₂^[15]等。其中,Zr组分在决 定双功能催化剂的物化性质和催化性能方面起着 关键作用,Zr可以稳定CO₂加氢反应的中间体,并防 止活性中心的烧结,从而提高催化活性和稳定性^[16]。 例如,有研究^[17]发现,在Zr基金属氧化物催化CO₂加 氢制甲醇反应中,ZrCdO_x金属氧化物中Zr与Cd之 间由于存在较强的协同作用,不仅可提高H₂的解离 能力,还因其表面氧空位缺陷高,可将产物中 CH₃OH选择性提高至80%。

分子筛的孔道大小和 Brønsted 酸(B 酸)含量直 接影响碳链生长的程度和低碳烯烃的选择性,较低 的 B 酸含量有利于提高 $C_2^{=} \sim C_4^{=}$ 的选择性,抑制低碳 烷烃($C_2^{0} \sim C_4^{0}$)的生成^[18-19]。SAPO-34分子筛择形催化 性能好、具有适当的酸性和优异的水热稳定性,广 泛应用于 MTO 反应中^[20-22]。研究发现,片状 SAPO-34分子筛比表面积大,比立方体 SAPO-34 更有利于 分散金属氧化物,暴露更多活性位点,因而具有更 高的 CO2转化率和 C2=~C4=收率[23]。Huang 等[24]研究 也发现,片状 SAPO-34 分子筛具有丰富的外部笼, 更有利于反应物和产物的扩散,因而具有更高的CO 转化率和C2=~C4=选择性。SAPO-18分子筛是一种固 体酸催化剂,具有与SAPO-34相似的孔道形状和尺 寸,基本结构单元均为双六元环,但SAPO-34的相 邻两层的双六元环呈平行排布,SAPO-18的双六元 环则为交叉排布,结构更加严密。且SAPO-18分子 筛由于硅进入磷酸铝骨架的方式与SAPO-34不同, 含有更少的B酸位点,因而在MTO反应中积炭速率 更慢,催化寿命更长[25-27]。Su等[28]将片状SAPO-18与 ZnCrO_x氧化物复合催化CO加氢制低碳烯烃时发 现,产物中烯烃/烷烃物质的量之比(n₀/n_p)高达29.9, 远高于SAPO-34的6.8,反应运行500h未发现明显 失活。

基于ZrCdO_x金属氧化物在催化CO₂合成甲醇中 优异的催化性能^[17],以及片状SAPO-18分子筛在CO 加氢制C₂⁼~C₄⁼的高选择性,我们设计并制备了 ZrCdO_x金属氧化物与片状SAPO-18分子筛复合的双 功能催化剂,研究了ZrCdO_x金属氧化物中Zr/Cd原 子比(n_z/n_{cd})对结构及物化性质的影响,以及SAPO-18分子筛中的硅铝比(n_{si0}/n_{Al20})对B酸的影响,并 考察了ZrCdO_x/SAPO-18双功能催化剂催化CO₂加氢 合成低碳烯烃反应性能。

1 实验部分

1.1 催化剂的制备

采用并流共沉淀法制备不同*n_z*/*n_{cd}*的 ZrCdO_x金 属氧化物。以*n_z*/*n_{cd}*=8为例:将19.1g硝酸锆五水合 物(99.99%,上海麦克林生化科技有限公司)与1.7g 硝酸镉四水合物(99.99%,上海易恩化学技术有限公 司)溶于50 mL去离子水中得到透明溶液A。将15.4 g碳酸铵(AR级,北京红星化工厂)溶于80 mL去离子 水中得到溶液B,然后与溶液A在70℃下并流共沉 淀于100 mL去离子水中,沉淀过程中控制 pH 值为 7.0,沉淀完成后在70℃下老化1h,之后离心并洗涤 5次后在110℃下干燥12h,并在马弗炉中500℃焙烧3h,所得金属氧化物即为Zr_sCd₁。采用相同方法制备Zr_sCd₁(*n*_z/*n*_{cd}=5:1)、Zr₁₆Cd₁(*n*_z/*n*_{cd}=16:1)以及单一的ZrO₂和CdO氧化物。

采用水热晶化法制备不同硅铝比的 SAPO-18 分子筛。所用原料为拟薄水铝石(Al₂O₃的质量分数 69%,山东铝业有限公司)、硅溶胶(质量分数 40%,美 国 Sigma-Aldrich 公司)、磷酸(质量分数 85%,上海阿 拉丁试剂)及四乙基氢氧化铵(TEAOH,质量分数 35%,北京伊诺凯科技有限公司),按 SiO₂、Al₂O₃、 P₂O₅、TEAOH、H₂O物质的量之比0.1:1.0:1.0:1.6:40 配制混合液,然后在100℃下晶化24h、180℃下晶 化48h,晶化完成后洗涤至中性,在110℃干燥12 h、550℃焙烧6h即得硅铝比为0.1的 SAPO-18(0.1) 分子筛。类似地,以异丙醇铝(质量分数 98.5%,上 海阿拉丁试剂)为铝源,配制 SiO₂、Al₂O₃、P₂O₅、HCl、 TEAOH、H₂O物质的量之比为0.01:1.0:1.0:0.3:1.4: 40 的混合液,在170℃晶化72h得到硅铝比为0.01 的 SAPO-18(0.01)分子筛。

采用物理混合法制备双功能催化剂 Zr₈Cd₁/ SAPO-18。将金属氧化物 ZrCdO₃与 SAPO-18 分子筛 按一定质量比在玛瑙研钵中混合研磨 10 min,然后 压片成型并筛分为 20~40 目颗粒用于催化性能 评价。

1.2 催化剂的表征

采用日本JEOL JEM-2100FM Ⅱ场发射透射电 子显微镜(TEM)观察样品的形貌并进行元素扫描, 工作电压为200 kV,将研磨后的样品分散于乙醇中 超声处理 30 min,然后滴加到铜网上分析。采用日 本Rigaku公司SmartLab SE型X射线衍射仪(XRD)表 征样品结构, Cu Kα射线为辐射源(λ=0.154 056 nm), 工作电压和电流分别为40 kV和40 mA,扫描速率为 8 (°)·min⁻¹,扫描范围为5°~80°。氮气吸附-脱附实 验在北京贝士德 3H-2000PS1/2 仪器上-196 ℃条件 下进行,样品在30 Pa、250 ℃脱气4 h。CO,和 NH,的 程序升温脱附(TPD)在美国 Micromeritics Autochem Ⅱ 2920 化学吸附仪上测定。以CO₂-TPD 为例,将 50 mg样品置于U型管中,先在He气氛中250℃恒 温处理1h,然后降至50℃继续吹扫0.5h,再切换为 CO,气体吸附1h后用He吹扫至TCD(热导池检测 器)基线平稳,然后升温至600℃,用TCD记录CO₂脱 附信号。X射线光电子能谱(XPS)表征在美国Thermo Fisher Scientific 公司 ESCALAB[™] XI 仪器上进行, Al Kα射线为激发源,采用吸附碳 C1s 的特征峰 (284.8 eV)对样品的电荷效应进行标定。

1.3 催化剂的评价

报

在固定床反应装置上进行双功能催化剂的活 性评价。反应前,将 0.4 g双功能催化剂置于以石英 管(内径 6 mm)为内衬的管式反应器中。反应条件: H_2 、CO₂、N₂体积比为 72:24:4, *T*=370 ℃, *p*=2.5 MPa, 气时空速(GHSV) 5 000 mL·g_{cat}⁻¹·h⁻¹。反应产物经冷 凝后进入气相色谱 Agilent 7890A 进行在线分析。 该色谱配备三阀四柱,采用毛细管柱 HP-AL/S(30 m×530 μm×15 μm)和氢火焰离子化检测器(FID)分 析 C₁~C₅烃类组分;采用填充柱 Porapak-Q、毛细管柱 HP-PLOT/Q(30 m×530 μm×40 μm)、HP-MOLESIEVE (30 m×530 μm×25 μm)串联及 TCD 分析 CO₂、CO 和 N₂。经碳平衡后计算 CO₂转化率及各产物的选择 性。计算公式如下:

CO₂转化率: $C_{\text{co}_2} = \frac{F_{\text{co}_2,\text{in}} - F_{\text{co}_2,\text{out}}}{F_{\text{co}_2,\text{in}}} \times 100\%$

式中 $F_{CO_2,in}$ 和 $F_{CO_2,out}$ 分别表示进出口CO₂的体积流量;

碳氢化合物(C_pH_q)选择性:

$$S_{C_{p}H_{q}} = \frac{n(C_{p}H_{q,out})}{\sum_{p} n(C_{p}H_{q,out})} \times 100\%$$

式中 $n(C_pH_{q,out})$ 代表各种碳氢化合物产品的物质的量;

副产物CO选择性:

$$S_{\rm CO} = \frac{F_{\rm CO,out}}{F_{\rm CO_2,in} - F_{\rm CO_2,out}} \times 100\%$$

式中F_{co.out}表示反应出口CO的体积流量。

2 结果与讨论

2.1 催化剂的表征分析

2.1.1 TEM分析

图 1 为样品 CdO、ZrO₂、Zr₈Cd₁和 Zr₈Cd₁/SAPO-18 (0.1)的 TEM 图和元素面扫图(TEM-mapping), TEM 图 中内嵌为相应样品的高分辨 TEM(HR-TEM)图。图 1a 显示 ZrO₂样品为不规则形状,其晶格条纹间距为 0.304 nm,归属于 ZrO₂(011)晶面^[29]。图 1b 中 CdO 颗 粒尺寸为大于 50 nm 的光滑颗粒且堆积严重,晶格 条纹间距为 0.260 nm,归属于 CdO 的(111)晶面^[30]。 引入 CdO 的 Zr₈Cd₁样品为无定形的小颗粒,且 Zr₈Cd₁

(a) ZrO₂, (b) CdO, (c) Zr₈Cd₁ and (d, e) Zr₈Cd₁/SAPO-18(0.1)
图 1 样品的(a~d) TEM 图及(e) TEM-mapping图
Fig.1 (a~d) TEM images and (e) TEM-mappings of the samples

的 CdO(111)和 ZrO₂(011)的条纹间距分别变为 0.274 和 0.293 nm,这是由于 Cd²⁺的离子半径(0.090 nm)大 于 Zr²⁺的离子半径(0.082 nm), CdO 进入到 ZrO₂晶格 后改变了二者间的晶格条纹间距。从 Zr₈Cd₁氧化 物和 SAPO-18(0.1)分子筛物理混合研磨后制得的 双功能催化剂的 HR - TEM 图(图 1d)可以看出, SAPO-18(0.1)分子筛呈现出片状堆叠形貌,单层厚 度约为 50 nm。对图 1d 所示的相同区域进行 TEM 元素面扫分析可知,元素 Zr、Cd 均匀分布在 Zr₈Cd₁ 氧化物中,Si、Al、P和O 相对较集中地分布在 Zr₈Cd₁ 氧化物外表面。 2.1.2 XRD分析

为了阐明CdO、ZrO₂和n_z/n_{Cd}不同的ZrCdO_x晶体 结构和物相组成,对催化剂进行了XRD分析,结果 见图2a。单一的ZrO₂样品出现了明显的四方相(*t*-ZrO₂)衍射峰,同时伴随着微弱的单斜相(*m*-ZrO₂)衍 射峰^[31]。引入少量CdO后,样品仅出现*t*-ZrO₂衍射 峰,未出现CdO衍射峰,这是因为CdO的含量少且 分散度高。当n_z/n_{Cd}达到5时,图中出现了CdO的特 征衍射峰,且ZrO₂的(011)晶面衍射峰由30.3°向低角 度偏移至30.1°,这是因为Cd进入ZrO₂晶格中导致 ZrO₂晶面间距膨胀,表明Zr与Cd之间存在较强的协

(a) Metal oxides and (b) SAPO-18 zeolites

图 2 样品的 XRD 图 Fig.2 XRD patterns of the samples 同作用。图2b为不同硅铝比的SAPO-18分子筛的 XRD图,各样品在9.5°、10.6°、13.0°、16.1°、17.1°、 21.3°等处都出现了较强的特征衍射峰,表明各样品 结晶性较好^[32]。

2.1.3 织构性质

金属氧化物的 N₂吸附-脱附等温线如图 3a 所示。ZrO₂及 ZrCdO_x的 N₂吸附-脱附等温线为Ⅳ型等温线,其回滞环类型为 H2 型,表明内部存在"墨水瓶"状的孔。CdO 的吸附-脱附等温线为典型的 III 型等温线,在低压区的吸附量非常少,而在高压区吸附量较大,这是由于颗粒堆积产生的狭缝孔^[33]。图 3b 为 Zr₈Cd₁和 SAPO-18(0.1)以及 Zr₈Cd₁/SAPO-18(0.1)样品的 N₂吸附-脱附等温线。SAPO-18(0.1)分子筛的曲线表现为 I 型等温线,在低的相对压力

区域,由于大量微孔填充,气体吸附迅速增加。从吸附-脱附形成的回滞环来看,SAPO-18(0.1)的等温线上的回滞环为H3型,说明样品中存在介孔和片状颗粒堆积形成的狭缝孔。同样地,Zr₈Cd₁/SAPO-18(0.1)样品中存在介孔和少量狭缝孔,这些介孔有利于反应物和产物分子的扩散。

报

表1列出了金属氧化物和分子筛的织构性质。 ZrO₂的比表面积为45 m²·g⁻¹,引入CdO后金属氧化 物的比表面积明显下降,CdO的比表面积最小。 Zr₅Cd₁比表面积为36 m²·g⁻¹,结合XRD结果中Zr₅Cd₁ 物相出现的CdO与ZrO₂晶相,认为其比表面积主要 由含量较多的ZrO₂提供。不同n_z/n_{cd}的ZrCdO_x的孔 体积和孔径相似。不同硅铝比的SAPO-18比表面 积和孔体积明显高于金属氧化物,且硅铝比为0.01

(a) Metal oxides and (b) Zr₈Cd₁, SAPO-18 and Zr₈Cd₁/SAPO-18 samples

图3 样品的N2吸附-脱附等温线

Fig. 3 N_2 adsorption-desorption isotherms of the samples

表1 金属氧化物和SAPO-18分子筛的织构性质

Sample	BET surface area / $(m^2 \boldsymbol{\cdot} g^{-1})^a$	Pore volume / $(cm^3 \cdot g^{-1})^b$	Pore diameter / nm^c	
$ m ZrO_2$	45	0.06	3.6	
$\mathrm{Zr}_{16}\mathrm{Cd}_1$	20	0.03	3.8	
$\mathrm{Zr}_8\mathrm{Cd}_1$	21	0.03	3.8	
$\mathrm{Zr}_5\mathrm{Cd}_1$	36	0.05	3.8	
CdO	5	0.06	29.9	
SAPO-18(0.01)	494	0.53	22.1	
SAPO-18(0.1)	470	0.44	12.4	
$\operatorname{Zr}_8\operatorname{Cd}_1/\operatorname{SAPO-18}(0.1)$	99	0.13	8.6	

^a Determined by applying the multi-point BET (Brunauer-Emmett-Teller) method; ^b Determined from the desorbed volume at p/p_0 =0.99; ^c Determined by applying the Barret-Joyner-Hallender method.

的SAPO-18(0.01)比表面积、孔容和孔径更大。物理 混合的Zr_sCd₁/SAPO-18(0.1)样品综合了金属氧化物 和分子筛的织构性质,但由于部分金属氧化物堵塞 了SAPO-18(0.1)的孔道,因而比表面积下降。

2.1.4 TPD分析

为了研究 CO₂在 CdO、Zr₈Cd₁和 ZrO₂上的脱附, 我们对样品进行了 CO₂-TPD 表征(图 4a)。图中 100 ℃左右的脱附峰为物理吸附峰,200 ℃以上的脱 附峰属于化学吸附,具体表现为金属氧化物的弱碱 性吸附(<400 ℃)和强碱性吸附(>400 ℃)^[34]。ZrO₂的 CO₂脱附峰最大,脱附量达到0.82 mmol·g⁻¹。CdO 的 CO₂脱附峰最小,脱附量为0.34 mmol·g⁻¹。样品 Zr₈Cd₁的 CO₂脱附峰温最低,这是因为CdO 与 ZrO₂之 间存在协同作用,使得 CO₂在 Zr₈Cd₁氧化物上易于 脱附。此外,因 Zr₈Cd₁氧化物中 ZrO₂的物质的量分 数达到 88.9%,可以认为 CO₂的吸附和活化主要发生 在ZrO₂位点上。

用 NH₃-TPD 测定分析 SAPO-18 分子筛的酸性, 结果见图 4b。将脱附曲线拟合为 3 个脱附峰,分别 对应于弱酸、中强酸和强酸位,其中高温脱附峰对 应于 SAPO-18 的 B 酸中心^[35]。经计算, SAPO-18(0.01) 分子筛的 B 酸含量为 0.20 mmol·g⁻¹,低于 SAPO-18(0.1)的 0.29 mmol·g⁻¹,表明其 Si 原子取代 P 原子而 形成的硅羟基(Si—OH)的含量少,有利于提高产物 中的 n_0/n_p 比值^[36]。

2.1.5 XPS分析

图5为金属氧化物的XPS谱图。图5a为O1s的高斯拟合谱图,分为晶格氧(O₁)和氧空位(O_v)2个特征峰,其中O₁在反应条件下可稳定存在,对反应影响较小^[17]。由图5a可知,Zr_sCd₁和Zr_sCd₁的氧空位含量分别为35.1%和32.9%,远高于单一ZrO₂的26.0%。这表明引入CdO使得ZrO₂产生了更多的氧

图4 (a) 金属氧化物的 CO₂-TPD 曲线; (b) 不同硅铝比的 SAPO-18 分子筛的 NH₃-TPD 曲线

Fig.5 XPS spectra of metal oxides

空位缺陷,有利于 CO₂的吸附和活化,这与 CO₂-TPD 表征结果一致。图 5b 中单一 CdO 的结合能为 403.6 和 404.5 eV,为明显的多峰结构。较低的结合能组 分归因于 CdO 中的 Cd—O 键合,而较高的结合能组 分则归因于大气表面污染或残留的生长前驱体导 致的更具电负性的物种,如 CdO₂、Cd(OH)₂和 CdCO₃^[37]。Cd3d在 Zr₅Cd₁和 Zr₈Cd₁金属氧化物中的 结合能分别为 404.5 和 404.8 eV,表明含有 ZrO₂的氧 化物增强了 CdO 的结合能。图 5c 中 Zr₅Cd₁样品与单 一 ZrO₂出现的 Zr₃d 结合能相同,这是因为 2 个样品 中均含有独立存在的 ZrO₂物相,使得其结合能相 同。Zr₈Cd₁样品中没有出现 CdO 物相,且其 XRD 峰 强度较弱,表明 ZrO₂与 CdO 之间存在较强的协同作 用,使得 Zr₈Cd₁样品的 Zr3d 结合能增强。

2.2 催化剂的催化性能

在反应温度 370 ℃、反应压力 2.5 MPa, Zr, Cd, 与 SAPO-18(0.1)的质量比为2时,考察了不同ng/ng的 金属氧化物与SAPO-18复合后对CO,加氢制低碳烯 烃反应性能的影响,结果见表2。可以看出,ZrO,/ SAPO-18(0.1)具有较高的C2=~C4=选择性(85.4%),但 其CO,转化率较低。引入少量CdO后的Zr₁₆Cd₁可使 CO2转化率从 6.1% 提高到 17.5%。当 nz/nca降低到 8 时, C₂⁼~C₄⁼选择性达到 85.6%, CO₂转化率达到 17.8%。进一步降低 n_z/n_{cd}导致 C₂⁻~C₄⁻选择性显著 下降, C₂°~C₄°选择性上升。单一CdO与SAPO-18(0.1) 分子筛复合后,其副产物CH₄选择性为30.0%, C₂°~C₄°选择性为48.8%, C₂⁼~C₄⁼选择性仅为15.7%。 这表明CdO比ZrO,的氢解离能力强^[17]。过量CdO的 存在使得双功能催化剂解离过量的氢,活化的CO 直接与解离的氢结合生成 CH4, 甚至导致大量 C2°~C4°的生成[38]。结合 XPS 表征, CdO 的引入增加 了ZrO,的氧空位缺陷,CO,转化率由6.1%显著提升 至 23.5%。Zr₈Cd₁/SAPO-18(0.1)催化剂的 C₂⁼~C₄⁼选 择性最高, n_0/n_p 达到 18.6。从表 2还可以看出,减小 硅铝比时, SAPO-18 分子筛的酸性降低,抑制了 C₂⁰~C₄⁰的生成, n_0/n_p 进一步增加到 37.2,但此时副产 物 CO 选择性高达 98.3%,烯烃时空收率仅为 1.7 mL·g⁻¹·h⁻¹。因此,调控 n_z/n_{Cd} 和分子筛酸性对 CO₂ 转化活性和产物选择性都至关重要。

在其他反应条件(如 370 ℃、2.5 MPa、GHSV= 5 000 mL·g_{ct}⁻¹·h⁻¹、Zr₈Cd₁和 SAPO-18 质量比为 2:1) 不变的条件下,仅改变其中一个变量,研究其对催 化性能的影响,结果图6所示。在相同反应条件下, 研究了Zr_sCd₁与SAPO-18(0.1)质量比的影响,反应结 果如图6a所示。当质量比为1:15时,CO,转化率仅 为8.2%,C,=~C,=选择性为56.2%,这是由于较低含量 的金属氧化物产生的中间体较少,对催化反应活性 的促进作用不明显。随着质量比的增加,CO,转化 率逐渐增高,CO选择性先降后升。当质量比增大到 4:1时,CO,转化率升至18.6%,C,=~C,=选择性达到 87.2%,继续增大质量比到20:1时,CH₄选择性急剧 增加到40.8%, C₂=~C₄=选择性降为45.4%。这表明分 子筛含量太多会生成较多的烷烃,当CO,转化率相 近时,金属氧化物含量越多,生成的副产物CO越 多,说明逆水煤气变换反应越严重[10]。Wang等[17]研 究发现,ZrCdO,对CO,加氢转化制甲醇具有良好的 催化性能,产物中甲醇选择性可达80%。据此推测 本研究中,CO,加氢首先在ZrCdO,金属氧化物上生 成甲醇中间体,然后在SAPO-18分子筛酸性孔道内 发生C--C耦合生成低碳烯烃[17,26]。

对 Zr₈Cd₁/SAPO-18(0.1) 催化剂在不同反应温 度、压力和空速下的催化性能进行了考察,结果如 图 6b~6d 所示。当反应温度为 350 ℃时,CO₂转化率 仅为 12.2%,低碳烯烃的选择性为 81.6%。当反应温

	表 2	双功能催化剂催化 CO ₂ 加氢制低碳烯烃反应性能
Table 2	Catalytic perfor	mance of CO, hydrogenation to light olefins over bifunctional catalyst

Sample	$C_{\rm CO_2} / \%$ _	$C_p H_q / \%$			S / 0%	n /n	Space-time yield /	
		CH_4	$C_2^{=} \sim C_4^{=}$	$C_2^{\ 0} \sim C_4^{\ 0}$	C ₅₊	- 3 _{C0} / 70	n_0/n_p	$(mL\boldsymbol{\cdot} g^{-1}\boldsymbol{\cdot} h^{-1})$
ZrO ₂ /SAPO-18(0.1)	6.1	7.2	85.4	4.4	3.0	97.4	19.4	1.0
$\mathrm{Zr_{16}Cd_l}/\mathrm{SAPO}\text{-}18(0.1)$	17.5	4.9	74.2	14.4	6.5	75.8	5.2	22.6
$\mathrm{Zr_8Cd_1/SAPO18(0.1)}$	17.8	3.5	85.6	4.6	6.3	82.4	18.6	19.3
$\mathrm{Zr}_5\mathrm{Cd}_1/\mathrm{SAPO}18(0.1)$	23.5	11.0	23.6	58.4	7.0	76.5	0.4	9.4
CdO/SAPO-18(0.1)	7.3	30.0	15.7	48.8	5.5	68.3	0.3	2.6
$\mathrm{Zr_8Cd_1/SAPO\text{-}18(0.01)}$	17.2	9.1	81.9	2.2	6.8	98.3	37.2	1.7

Reaction condition: 370 °C, 2.5 MPa, V_H, V_{CO}=3, GHSV=5 000 mL·g_{cat}⁻¹·h⁻¹, mass ratio of metal oxides to SAPO-18 was 2:1.

度升至 370 ℃时, CO,转化率提高到 17.8%, 进一步 提高反应温度到 390 ℃, CO,转化率达到 22.9%,但 C, -~ C, -选择性显著下降, 仅为57.7%, C, -C, -C, -选择性 则高达32.0%。为了使金属氧化物与分子筛之间获 得良好的协同作用,必须匹配两者的反应温度。 390 ℃以下时CO2转化率低,但C2=~C4=选择性高;反 应温度的升高有利于提高CO,转化率,但降低了C,= ~C₄=选择性,导致CH₄和C,º~C₄°选择性增加。从图 6c和图6d可以看出,反应压力升高使得CO。转化率 逐渐增加,但C,=~C,=选择性略有下降,反应空速增 加则导致CO,转化率逐渐下降,C,=~C,=选择性升高, 这是因为增加空速使得反应气在催化剂上的停留 时间减少,避免了过度加氢,有利于提高C,=~C,=选 择性。综合CO2转化率和C2=~C4=选择性等因素,认 为*T*=370 ℃、*p*=2.5 MPa、GHSV=5 000 mL·g_{cat}⁻¹·h⁻¹是 CO,在ZrCdO,/SAPO-18(0.1)双功能催化剂上合成低 碳烯烃的适宜反应条件。在最佳反应条件下对 Zr_sCd₁/SAPO-18(0.1)催化剂的稳定性进行了评价,结 果如图7所示,可以看出,该催化剂反应50h后未出现明显失活,表明该催化剂具有良好的稳定性。

Reaction condition: 370 °C, 2.5 MPa, 5 000 mL \cdot g_{cat}⁻¹·h⁻¹, mass ratio of Zr₈Cd₁ to SAPO-18(0.1) was 2:1

- 图7 Zr₈Cd₁/SAPO-18(0.1)催化剂催化CO₂加氢制低碳 烯烃的稳定性
- Fig.7 Stability of the catalyst $Zr_8Cd_1/SAPO-18(0.1)$ for CO_2 hydrogenation to light olefins

3 结 论

我们设计并制备了 ZrCdO_x/SAPO-18 双功能催 化剂,研究了其催化 CO₂加氢直接合成低碳烯烃反 应性能。CdO 的引入使得金属氧化物 ZrCdO_x的氧 空位增加,进而提高了 CO₂转化率,CdO 含量过多会 导致双功能催化剂的氢解离能力增强,致使 CH₄和 $C_2^0 \sim C_4^0$ 选择性增加,Zr/Cd 原子比为 8 时 CO₂转化率 和 C₂⁻~C₄⁻选择性最佳。对 SAPO-18 分子筛的研究 表明,较弱的 Brønsted 酸性可以抑制 C₂⁰~C₄⁰的生成, 具有更高的 n_0/n_p 比值。在双功能催化剂中,分子筛 含量太高会导致 C₂⁰~C₄⁰选择性增加,含量太低则不 利于 C—C 耦合生成低碳烃。在 370 °C、2.5 MPa、5 000 mL·g_{cat}⁻¹·h⁻¹、Zr₈Cd₁与 SAPO-18(0.1)的质量比为 2 的条件下,CO₂转化率达到 17.8%,C₂⁻~C₄⁻⁻选择性为 85.6%(除 CO 外), n_0/n_p 比值高达 18.6,且催化剂反应 50 h后未出现明显失活。

参考文献:

- [1] Guo L S, Sun J, Ge Q J, Tsubaki N. J. Mater. Chem. A, 2018,6(46): 23244-23262
- [2] Ye R P, Ding J, Gong W B, Argyle M D, Zhong Q, Wang Y J, Russell C K, Xu Z H, Russell A G, Li Q H, Fan M H, Yao Y G. Nat. Commun., 2019,10(1):5698-5713
- [3] Ma Z Q, Porosoff M D. ACS Catal., 2019,9(3):2639-2656
- [4] Ronda-Lloret M, Rothenberg G, Shiju N R. ChemSusChem, 2019,12 (17):3896-3914
- [5] Gao J J, Jia C, Liu B. Catal. Sci. Technol., 2017,7(23):5602-5607
- [6] Sedighi M, Mohammadi M. J. CO₂ Util., 2019,35:236-244
- [7] Tan L, Zhang P P, Cui Y, Suzuki Y, Li H J, Guo Li S, Yang G H, Tsubaki N. Fuel Process. Technol., 2019,196:106174-106179
- [8] Hu S, Liu M, Ding F S, Song C S, Zhang G L, Guo X W. J. CO₂ Util., 2016.15:89-95
- [9] Numpilai T, Witoon T, Chanlek N, Limphirat W, Bonura G, Chareonpanich M, Limtrakul J. Appl. Catal. A, 2017,547:219-229
- [10]Liu X L, Wang M H, Zhou C, Zhou W, Cheng K, Kang J C, Zhang Q H, Deng W P, Wang Y. Chem. Commun., 2018,54(2):140-143
- [11]Li Z L, Wang J J, Qu Y Z, Liu H L, Tang C Z, Miao S, Feng Z C, An H Y, Li C. ACS Catal., 2017,7(12):8544-8548
- [12]Liu X L, Wang M H, Yin H R, Hu J T, Cheng K, Kang J C, Zhang Q H, Wang Y. ACS Catal., 2020,10(15):8303-8314
- [13]Gao P, Dang S H, Li S G, Bu X N, Liu Z Y, Qiu M H, Yang C G, Wang H, Zhong L S, Han Y, Liu Q, Wei W, Sun Y H. ACS Catal., 2018,8(1):571-578
- [14]Dang S S, Li S G, Yang C G, Chen X Q, Li X P, Zhong L S, Gao P, Sun Y H. ChemSusChem, 2019,12:1-11
- [15]刘蓉, 查飞, 杨爱梅, 常玥. 高等学校化学学报, 2016, 37(5):964-971

LIU R, ZHA F, YANG A M, CHANG Y. Chem. J. Chinese Universities, 2016,37(5):964-971

[16]Dang S S, Gao P, Liu Z Y, Chen X Q, Yang C G, Wang H, Zhong L S, Li S G, Sun Y H. J. Catal., 2018,364:382-393

报

- [17]Wang J J, Tang C Z, Li G N, Han Z, Li Z L, Liu H L, Cheng F, Li C. ACS Catal., 2019.9(11):10253-10259
- [18]Jiao F, Li J J, Pan X L, Xiao J P, Li H B, Ma H, Wei M M, Pan Y, Zhou Z Y, Li M R, Miao S, Li J, Zhu Y F, Xiao D, He T, Yang J H, Qi F, Fu Q, Bao X H. *Science*, **2016**,351(6277):1065-1068
- [19]Zhang P, Meng F H, Li X J, Yang L L, Ma P C, Li Z. Catal. Sci. Technol., 2019,9(20):5577-5581
- [20]Sun Q M, Xie Z K, Yu J H. Natl. Sci. Rev., 2018,5(4):542-558
- [21]李俊汾, 樊卫斌, 董梅, 何月, 秦张峰, 王建国. 高等学校化学学 报, 2011,32(3):765-771
 - LI J F, FAN W B, DONG M, HE Y, QIN Z F, WANG J G. Chem. J. Chinese Universities, 2011,32(3):765-771
- [22]崔杏雨, 王晶晶, 潘梦, 宁伟巍, 颜琳琳, 郑家军, 李瑞丰. 无机化 学学根, **2018,34**(2):300-308
 - CUI X Y, WANG J J, PAN M, NING W W, YAN L L, ZHENG J J, LI R F. Chinese J. Inorg. Chem., **2018,34**(2):300-308
- [23]Wang P F, Zha F, Yao L, Chang Y. Appl. Clay Sci., 2018,163:249-256
- [24]Huang Y X, Ma H F, Xu Z Q, Qian W X, Zhang H T, Ying W Y. Fuel, 2020,273:117771
- [25]郭云鸦,梁光华,张燕挺,何祖光,梁亚凝,李宁,李晓峰,窦涛. 无 机化学学报, 2019,35(2):185-193
 - GUO Y Y, LIANG G H, ZHANG Y T, HE Z G, LIANG Y N, LI N, LI X F, DOU T. *Chinese J. Inorg. Chem.*, **2019**,**35**(2):185-193
- [26]Zhong J W, Han J F, Wei Y X, Xu S T, Sun T T, Zeng S, Guo X W, Song C S, Liu Z M. Chinese J. Catal., 2019,40(4):477-485
- [27]赵东璞,赵全升,张妍,石拓,姚横国,于建强.高等学校化学学报,2016,37(2):342-348
- ZHAO D P, ZHAO Q S, ZHANG Y, SHI T, YAO H G, YU J Q. Chem. J. Chinese Universities, 2016,37(2):342-348
- [28]Su J J, Zhou H B, Liu S, Wang C M, Jiao W Q, Wang Y D, Liu C, Ye Y C, Zhang L, Zhao Y, Liu H X, Wang D, Yang W M, Xie Z K, He M Y. Nat. Commun., 2019,10(1):1297-1305
- [29]Zhang G C, Fan G L, Yang L, Li F. Appl. Catal. A, 2020,605:117805-117817
- [30]Eskizeybek V, Avcı A, Chhowalla M. Cryst. Res. Technol., 2011,46 (10):1093-1100
- [31]Barad C, Kimmel G, Hayun H, Shamir D, Shandalov M, Shekel G, Gelbstein Y. J. Mater. Sci., 2018,53(18):12741-12749
- [32]Zhao D P, Zhang Y, Peng Y H, Yu J Q. Catal. Lett., 2016,146(11): 2261-2267
- [33]Bai B, Guan W S, Li Z Y, Li Puma G. Mater. Res. Bull., 2011,46(1): 26-31
- [34]Raveendra G, Li C M, Cheng Y, Meng F H, Li Z. New J. Chem., 2018,42(6):4419-4431
- [35]Cheng K, Gu B, Liu X L, Kang J C, Zhang Q H, Wang Y. Angew. Chem. Int. Ed., 2016,55(15):4725-4728
- [36]Chen J S, Thomas J M, Wright P A, Townsend R P. Catal. Lett., 1994,28(2):241-248
- [37]King P D C, Veal T D, Schleife A, Zúñiga-Pérez J, Martel B, Jefferson P. H, Fuchs F, Muñoz - Sanjosé V, Bechstedt F, Mcconville C F. *Phys. Rev. B*, **2009**,**79**(20):205205-205211
- [38]Liu X L, Zhou W, Yang Y D, Cheng K, Kang J C, Zhang L, Zhang G Q, Min X J, Zhang Q H, Wang Y. Chem. Sci., 2018,9(20):4708-4718