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Two Nitronyl Nitroxide Biradical-Bridged Lanthanide One-Dimensional Chains:
Crystal Structure, Magnetic Properties and Luminescent Behavior

LI Hong-Dao™ ZHAI Li-Jun SONG Yong-Bo NIU Yu-Lan™
(Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China)

Abstract: The rational design of 2p-4f chains, which are made of 4f ions and nitronyl nitroxide biradical, has been
presented. The reaction of Ln(hfac);-2H,0 (hfac=hexafluoroacetylacetonate) and nitronyl nitroxide biradical
BNPhOEt (BNPhOEt=1,2-(bis-2,2"-(4,4,5,5 -tetramethylimidazolyl - 1 -oxyl-3-oxide) phenoxy)ethane) afforded two
isostructural chains of the formula [Ln(hfac),(BNPhOEt)]-C;H,, (Ln=Tb (1), Ho (2)). Direct-current magnetic suscep-
tibility studies show ferromagnetic 4f-radical interaction in Th complex while antiferromagnetic interaction in Ho
derivative. In addition, the luminescence emission spectra of two complexes vary depending on lanthanide ion.
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In recent years, rare - earth complexes, exhibiting as well as magnetic hysteresis

slow relaxation of magnetization on molecular level,
attract a lot of attention on account of their latent adhi-
bition in molecular spintronics and quantum comput-
ing"*. Therefore, great efforts in this field have been
devoted to search novel 4f-based complexes”'. In 2003,
Ishikawa and his colleagues obtained the first SMMs
(single-molecule-magnets) based on the Th(Il) ion initi-
ating a span-new chapter in molecular magnetism'®.

More recently, the remarkable magnetic reversal barrier
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around 80 K had been achieved with a mononuclear Dy(Il)
metallocene complex [(1°-Cp*)Dy(7’-Cp™)|[B(C4F),]".

On the other hand, to design and construct Ln -
based complexes with diverse structural topologies and
intriguing magnetic properties, the option of suitable
organic ligands is vital, among which nitronyl nitrox-
ides are very efficient building blocks. Nitronyl nitrox-
ides are very well suited to bind 4f ions and provide

strong magnetic coupling with lanthanide metal, on
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account of the direct overlap of orbitals containing un-
paired electrons. Accordingly, a number of 4f magnetic
complexes based on nitronyl nitroxide radicals, includ-
ing single - chain magnets™™ and single - molecule mag-
nets”, had been reported. For instance, a family of nit-
ronyl nitroxide-lanthanide one-dimensional (1D) chains
[Ln(hfac);(NITPhOPh)] (Ln=Tb, Dy, Ho, Tm; hfac=
hexafluoroacetylacetonate) behave as SCMs (single -
chain-magnets)"’. Pyridine-substituted nitronyl nitrox-
ide-bridged ring-like Dy-SMMs had been isolated"". In
2010, one tri-spin Dy- nitronyl nitroxide biradical com-
pound, presenting SMM behavior''”, was synthesized.

Previously, we also designed nitronyl nitroxide biradi-

cal (NITPhImbis) bridged 1D lanthanide chains™' and
two lanthanide complexes involving BNPhOEL biradi-
cal [Ln(hfac),(BNPhOEY)|-C(H,, (Ln=Gd, Dy; BNPhOEt
=1,2-(bis-2,2'-(4,4,5,5-tetramethylimidazolyl-1-oxyl-3-
oxide) phenoxy)ethane) ", but the investigation of the
coupling between 4f ions and radical is limited. Base
on this, we continue the above work on nitronyl nitrox-
ide biradical (BNPhOEL) for lucubrating the magnetic
coupling between lanthanide metal and nitronyl nitrox-
ide radical and fluorescent properties. Here, we use
BNPhOEt ligand to react with Th (I)/Ho () ions for
constructing two 4f - complexes, namely [Ln(hfac),

(BNPhOEL)]- C,H,, (Ln=Tb (1), Ho (2)) (Scheme 1).

M
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n-| hexane +CH,CI,

Scheme 1 Schematic representation for synthesis of 1 and 2

1 Experimental

1.1 Materials and instruments
All reagents are commercially achieved and used
without more purification. Elemental analyses (C, H
and N) were performed by Perkin-Elmer 240 elemental
analyzer. Magnetic measurements were recorded on a
Quantum Design SQUID VSM magnetometer. Mea-
sured values were corrected for the sample holder and
the diamagnetism deduced from Pascal’s constants.
Fluorescent spectra of complexes 1 and 2 were gath-
ered via F-7000 fluorescence spectrophotometer.
1.2 Syntheses of [Ln(hfac),(BNPhOEt)]- CH,, (Ln

=Tb (1), Ho (2))

A solution of Ln(hfac),-2H,0 (Ln=Tb (1), Ho (2))
(0.01 mmol) in 16 mL dry n-hexane was refluxed for
1.5 h with constant stirring. After cooling to 53 °C, a so-
lution of BNPhOEt (0.005 3 g, 0.01 mmol) in CH,CI, (4
mL) was added in one portion with refluxing for 6 min
followed by filtration. The resultant filtrate was left at
ambient temperature to evaporate without any distur-
bance, giving red crystals suitable for X -

analysis over 8 d. For 1: FT-IR (KBr, ecm™): 1 796(s),

ray structure

1 358(m), 1 181(s), 1 159(s), 1 074(s), 948(s), 858(m),
547(s) em’'.  Elemental Anal. Caled for
CyoHs;F s ThbN,O ,(%): C, 42.31; H, 3.84; N, 4.03. Found
(%): C, 42.05; H, 3.31; N, 3.89. For 2: FT-IR (KBr,
em™): 1.795(s), 1 357(m), 1 179(s), 1 160(s), 1 073(s),
947(s), 857(m), 546(s) cm™". Elemental Anal. Calcd. for
CyHsF iHoN,0,,(%): C, 42.13; H, 3.82; N, 4.01. Found
(%): C, 42.02; H, 3.49; N, 4.23.
1.3 Crystal structure determination

Crystal data of complexes 1 and 2 were collected
at 113(2) K on a Rigaku Saturn CCD diffractometer
with Mo Ka radiation (A =0.071 073 nm). SADABS!"
was applied to empirical absorption correction. The
structures of two complexes were solved by direct meth-
ods and refined by the full-matrix least squares method
with a suite of SHELX programs®. Anisotropic param-
eters were assigned to non-hydrogen atoms. Mean-
while, H atoms were set in calculated positions and
refined isotropically by a riding mode. Several severely
disordered n-hexane molecules in the unit cell of both
complexes were treated with SQUEEZE routine"” dur-

ing the structural refinement. Data collection and
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refinement parameters are summarized in Table 1, and

selected bond distances and bond angles are given in

Table 2 and S1 (Supporting information).
CCDC: 1906230, 1; 1906231, 2.

Table 1 Crystallographic data and structure refinement for 1 and 2

Complex 2
Empirical formula C4HgsF s ThN,O,, CyHgF sHoN,O
Formula weight 1390.70 1396.71
Crystal system Trigonal Trigonal
Space group R3¢ R3c
a/nm 3.334 5(6) 3.331 14(16)
b/nm 3.334 5(6) 3.331 14(16)
¢/nm 2.424 5(10) 2.428 57(16)
V/nm? 23.346(13) 23.338(3)

A 18 18

D,/ (g cm™) 1.670 1.679

u/ mm™! 1.489 1.652

0 range / (°) 3.05~27.54 3.05~27.50
Reflections collected 60 450 79711
Unique reflection, R, 5928, 0.080 8 5801, 0.069 4
GOF (F?) 1.100 1.055

R, wR, [I>20°(])]
R,, wR, (all data)

0.086 7, 0.205 0
0.1177,0.225 0

0.0900,0.215 5
0.116 2,0.234 7

Table 2 Selected bond lengths (nm) and angles (°) for complexes 1 and 2

Complex 2
Ln—0O0(rad) 0.232 5(6) 0.230 3(7)
Ln—0O(hfac) 0.233 2(6)~0.238 4(5) 0.232 4(7)~0.236 9(7)

O(rad)—Ln—0O0(rad)

137.7(3)

137.23)

2 Results and discussion

2.1 Description of crystal structures

As revealed by single-crystal X-ray crystallogra-
phy, complexes 1 and 2 are isostructural and crystal-
lize in the trigonal R3¢ space group. As shown in Fig.1
and S1, each BNPhOELt biradical behaves as a biden-
tate ligand to bind two Ln(l) ions (Th(/Ho(l) in the
-1 n° i1’ n' mode via nitroxide groups in the chain.
The Ln() center is eight-coordinated, surrounded by
six oxygen atoms from three chelated hfac™ ligands and
remaining oxygen atoms descending from nitroxide
groups. To determine the coordination sphere of Ln (Il
centers, the continuous shape measure parameters
(CShMs) were calculated by SHAPE software!", indi-

cating the distorted dodecahedron with triangular faces

coordination geometry (D,,) for 1 and 2 (Fig.2 and S2,
Table 3).

Ln—0,,,. bond lengths (0.233 2(6)~0.238 4(5) nm
for 1 and 0.232 3(7)~0.237 0(7) nm for 2) and Ln—0

radical

Ellipsoids are set at the 30% probability levels; Hydrogen, fluo-

rine atoms are not shown for clarity; Symmetry codes: a: —x+4/3,

—x+y+2/3, —z+1/6; b: y+2/3, x-2/3, —z—1/6

Fig.1

Crystal structure of complex 1
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Symmetry code: a: —x+4/3, —x+y+2/3, —z+1/6
Fig.2 Local coordination geometry of Th(Ill) ion

Table 3 SHAPE analysis for 4f metal of complexes

1and 2
Complex TDD-8 BTPR-8 JSD-8
1 0.051 2.570 2.538
2 0.040 2.609 2.568

distances (0.232 5(6) nm for 1 and 0.230 2(7) nm for 2)
are similar to those of reported 4f-radical complexes”.
Packing of these chains is shown in Fig.3 and S3. The
intrachain distances between both Ln(lll) ions are 1.113
nm for 1 and 1.115 nm for 2, while the nearest inter-
chain Th---Th and Ho---Ho separations are found to be
1.094 4 and 1.094 3 nm, respectively. The shortest in-
terchain contacts between uncoordinated nitroxide

groups are equal to 0.834 1 and 0.825 1 nm for com-
plexes 1 and 2, respectively.

Hydrogen and fluorine atoms are omitted for clarity

Fig.3 Packing diagram of complex 1

2.2 Magnetic properties

The direct current (dc) magnetic susceptibilities
of complexes 1 and 2 were recorded under an external
field of 1 000 Oe in a temperature range of 2~300 K.
As shown in Fig.4, the x,T products at 300 K were

12.60 cm?+K+mol™ for 1 and 14.85 cm*-K-mol™ for 2,

which were slightly higher than theoretical values of

12.57 and 14.82 cm’+K-mol™" for one uncoupled
Ln() ion (Th(): "F,, S=3, L=3, g=3/2, C=11.82 cm*-K -
mol™; Ho () : Iy, S=2, [=6, g=5/4, C=14.07 cm’-K-
mol™") and one biradical (mono radical: S=1/2, g=2.0, C
=0.375 cm’+K-+mol™). For complex 1, on lowering tem-
perature, the value of y,T stayed relatively unchanged
until about 49 K. Then, y,T product fell sharply. For
complex 2, x,T value continuously decreased from

room temperature to 5.649 ¢cm’+K+-mol™ at 2 K.
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Solid line represents calculated behavior; Inset: a model of
magnetic exchange coupling
Figd xyT vs T plots of complexes 1 and 2

For both complexes, there are two effective mag-
netic couplings: (a) the interaction between Th(Il)/Ho(Il)
ion and coordinated nitroxide group; (b) magnetic cou-
pling between both NO groups through Th(Il)/Ho(lll) ion.
The magnetic interaction between two mono-radicals
within the biradical is expected to be very weak. To
achieve a rough quantitative analysis, based on the
large anisotropy of Th(ll) and Ho (), we suppose that
the total magnetic susceptibility ( x,..) is the aggrega-
tion of the isolated lanthanide ion and two mono-
radicals (Eq. 1). Th(I)/Ho () ion may be assumed to
show a splitting of the m, energy levels in an axial crys-
tal field™. A represents the zero-field-splitting parame-
ter. Thus, Eq.2~4 can be used to describe xy,, xy, and
X.a» respectively. The magnetic coupling between 4f
ion and mono-radical is introduced by the mean-field,
zJ' (Eq.5).

Xt = XinF 2 X @)
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p Ng“d B’ 1( N 1) ( =) 0 there is ferromagnetic interaction between Tb (I} ion
rad Brd = . .
3T 21\2 and the coordinated mono-radical. For 2, g=1.26, A=
Yo = Xtotal 5) -0.02 em™, zJ'=—0.06 cm™ in the same temperature
M

1=[22)'1(Ng” B*) ] X
The best fitting parameters g=1.51, A=0.11 em™,
zJ'=0.022 ¢m™ were given for complex 1 in a range of

20~300 K and the determined zJ' value manifests that

range. The negative value of zJ' indicates the antiferro-
magnetic Ho (I - radical interaction. These values are

consistent with values previously observed for Ln-rad
complexes® (Table 4).

Table 4 Magnetic parameters for Ln-rad complexes with tri-spin units

Complex zJ' [ em™ A/cem™! Ref.
[Th(hfac),(NITNapOMe), | 0.26 0.55 [21a]
[Th(hfac),(NITPhSCF),] 0.024 0.051 [21b]
[Th(hfac),(NITPh-3-Br-4-OMe), ] -0.09 -0.19 [21¢]
[Th(hfac)y(BNPhOED)]- CoH, 0.022 0.11 This work
[Ho(hfac)(NITNapOMe), ] -0.05 -0.03 [21a]
[Ho(hfac),(NITPh-3-Br-4-OMe), ] ~0.04 -0.02 [21¢]
[Ho(hfac),(BNPhOED)]- C,H,, -0.06 ~0.02 This work

The magnetization as a function of applied field
was determined at 1.8 K in a field range of 0~70 kOe

(Fig.5

displayed that M values increased precipitously at low

). The M versus H plots of complexes 1 and 2

fields, then the magnetization increased gently and did
not reach saturation values at 70 kOe. The behavior of

both complexes manifests the presence of low-lying

7

) A A A A A A A
0 10 20 30 40 50 60 70
H/kOe

Fig.5 Field dependence of magnetization at 2 K for

complexes 1 and 2

excited states and/or significant magnetic anisotropy.
To study the dynamic magnetism of complex 1,
temperature-dependent alternating-current (ac) suscep-
tibility data were collected, but no out-of-phase signal
could be observed under zero direct-current (de) field
(Fig.6). To restrain possible quantum tunneling process
(QTM), 3 kOe dc field was applied to probe dynamic

20 p

—0—200 Hz
—0—300 Hz
—0O— 500 Hz
~0O— 650 Hz

15

x> X"/ (cm®+mol™)
>
LJ

0.0

T/K

Fig.6 Temperature dependence of in-phase and out-of-phase
of ac magnetic susceptibilities for 1 in zero dc field

with an oscillation of 3 Oe
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magnetic behavior. As depicted in Fig.S5, the out-of-
phase susceptibility curves showed weak frequency de-
pendent, revealing the presence of slow relaxation mag-
netization.
2.3 Fluorescent properties

The fluorescent spectra of Th and Ho complexes
in CH,Cl, (10 pmol-L™) was researched at room tem-
perature. Characteristic fluorescent emissive peaks of

Tbh () ion were observed with four narrow emission

Intensity / a.u.

450 500 550

Wavelength / nm

600

Intensity / a.u.

bands at 491, 547, 581 and 622 nm, which correspond
to the °D,-'F,, °D,-"F,,°D,-"F, and °D,-"F, transitions of
Th(ID ion. The stronger emission intensity of the *D,-"F
transition manifests that biradical BNPhOELt is propi-
tious to sensitize green light of Th(Il) ion (Fig.7, left).
Complex 2 displayed emission spectra at 339, 411 and
470 nm, assigned to the characteristic emission of the

°,-°G,+’F, transition of the Ho™ center™ (Fig.7, right).

500

400

(9%

(=3

(=}
L]

(=]

(=3

(=}
T

100 p

400 500 600
Wavelength / nm

Fig.7 Emission spectra of complexes 1 (left) and 2 (right)

3 Conclusions

In summary, two one-dimensional biradical-

bridged lanthanide complexes [Ln(hfac);(BNPhOE?)] -
CH,, (Ln=Tb (1), Ho (2)) have been successfully de-
signed and synthesized, in which 4f ions are connected
by biradcial ligands through the NO groups of two
mono - radicals. The magnetic studies indicate that
there are ferromagnetic 4f-radical coupling in 1 and an-
tiferromagnetic interaction in 2. Th complex displayed
slow relaxation magnetization. Moreover, the fluores-
cent emission spectra of [Ln(hfac),(BNPhOEt)] -CH,,
exhibited typical 4f-centered luminescence. This work
not only enables us to understand the optical behavior
and magnetic interactions between lanthanide ion and
nitronyl nitroxide radical, but also provides valuable in-

sight into the chemistry of 2p-4f complexes.
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