1,1'-二羟基-5,5'-联四唑的镧系金属配合物的合成、表征及热行为

罗利琼^{1,2} 王从军² 沈 娟² 金 波^{*,1} 彭汝芳¹ ('西南科技大学,环境友好能源材料国家重点实验室,绵阳 621010) (²西南科技大学材料科学与工程学院,绵阳 621010)

摘要:以1,1'-二羟基-5,5'-联四唑(H₂BTO)为配体,镧系金属离子作为金属中心,采用溶剂热法制备了5种金属配合物: [La₂(BTO)₃(H₂O)₈]·2H₂O (1)、[Ce₂(BTO)₃(H₂O)₈]·2H₂O (2)、[Pr₂(BTO)₃(H₂O)₈]·2H₂O (3)、[Sm₂(BTO)₃(H₂O)₈]·2H₂O (4)和[Nd₂(BTO)₃(DMF)₄]· 6H₂O (5)。通过单晶X射线衍射和元素分析对5种配合物的结构进行了表征。结果表明,5种配合物均属于单斜晶系,P2₁/n空 间群。利用差示扫描量热法研究了配合物1~4的热稳定性,采用Kissinger法和Ozawa法分别计算了其热分解动力学参数。

关键词:含能材料;镧系金属配合物;1,1'-二羟基-5,5'-联四唑;晶体结构;热分析 中图分类号:0614.33⁺1;0614.33⁺1;0614.33⁺4;0614.33⁺7;0614.33⁺5 文献标识码:A 文章编号:1001-4861(2021)09-1529-07 DOI:10.11862/CJIC.2021.168

Synthesis, Characterization and Thermal Behavior of Lanthanide Metal Complexes Based on 1*H*,1'*H*-5,5'-Bitetrazole-1,1'-diolate

LUO Li-Qiong^{1,2} WANG Cong-Jun² SHEN Juan² JIN Bo^{*,1} PENG Ru-Fang¹

(¹State Key Laboratory of Environmental-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China)

(²School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China)

Abstract: Five lanthanide metal complexes, $[La_2(BTO)_3(H_2O)_8] \cdot 2H_2O$ (1), $[Ce_2(BTO)_3(H_2O)_8] \cdot 2H_2O$ (2), $[Pr_2(BTO)_3(H_2O)_8] \cdot 2H_2O$ (3), $[Sm_2(BTO)_3(H_2O)_8] \cdot 2H_2O$ (4) and $[Nd_2(BTO)_3(DMF)_4] \cdot 6H_2O$ (5), were synthesized by solvothermal method with 1H, 1'H-5, 5'-bitetrazole-1,1'-diolate (H₂BTO) as ligand and lanthanide metal ions as metal centers. The structures of five complexes were characterized by single crystal X - ray diffraction and elemental analysis. The results show that all the complexes belong to monoclinic system, $P2_1/n$ space group. The thermal stability of complexes $1\sim4$ was investigated by differential scanning calorimetry. And their kinetic parameters of thermal decomposition were calculated by Kissinger method and Ozawa method, respectively. CCDC: 1848729, 1; 1848732, 2; 1843371, 3; 1860383, 4; 1860390, 5.

Keywords: energetic materials; lanthanide metal complexes; 1H,1'H-5,5'-bitetrazole-1,1'-diolate; crystal structure; thermal analysis

为平衡含能材料的能量特性和安全性能之间 的矛盾,含能金属配合物作为一种优良的新型含能 材料受到广泛关注。近年来,随着配位理论和有机 合成的深入发展,由金属离子和含能配体配位驱动 形成的含能金属配合物应运而生,并广泛应用于起 爆药、猛炸药、烟火剂等领域^[1-7]。

国家自然科学基金(No.21875192)、四川省杰出青年科技人才计划(No.19JCQN0085)、四川省科技厅应用基础研究项目(No.2019YJ0355) 和环境友好能源材料国家重点实验室开放基金(No.20fksy16)资助。

收稿日期:2021-04-12。收修改稿日期:2021-05-13。

^{*}通信联系人。E-mail:jinbo0428@163.com

四唑及其衍生物具有良好的氧平衡、分解产物 主要为N,、对环境污染小的特点,已成为国内外研 究的热点之一。其中,1,1'-二羟基-5,5'-联四唑 (H₂BTO)不仅具有氮含量高、氧平衡好、爆轰性能优 异、环境友好、热稳定性良好等特点,还因其具有较 大的共轭体系、配位位点多、配位模式灵活等优势 而被广泛研究。自2001年Tselinskii团队¹⁸设计合 成H₂BTO以来,大量基于BTO²⁻的盐类已被研究,如 TKX-50^[9]、DUBTO^[10]等都是潜在的含能炸药。但以 H,BTO为含能配体的含能金属配合物研究主要集中 在主族金属离子和过渡金属离子。2016年,Guo 等^[11]以Pb²⁺为金属中心,H₂BTO为含能配体,通过界 面扩散法获得含能配合物 {[Pb3(DOBT)3(H,O)2]. 4H,O],,该配合物属于单斜晶系,C2/c空间群,其密 度为2.718 g·cm⁻³,热分解温度为287.4 ℃。同年, Shang等[12]同样以Pb2+为金属中心,H,BTO为含能配 体,采用水热法得到3D含能金属有机框架[Pb(BTO) (H₂O)], 该配合物也属于单斜晶系, C2/c空间群, 其 展现了超高的密度(3.823 g·cm⁻³)和热分解温度 309 ℃, 爆热低于 RDX 和 HMX, 爆速(9.204 km·s⁻¹)和 爆压(53.06 GPa)与[Cu(atrz)₃(NO₃)₂]_n相当,可作为潜在 的含能材料使用。同年,Zhang等[13]以Li*为金属中 心,BTO²⁻为含能配体,以三氨基胍离子(TGA⁺)平衡 电荷,制备了含能聚合物{(TAG)[Li(BTO)(H₂O)]},研 究表明该聚合物具有较高的氮含量,可以作为潜在 的钝感炸药使用。2019年,Zhang团队^[14]合成了系 列过渡金属 Mn(II)、Co(II)、Ni(II)、Cu(II)、Zn(II)与 BTO²⁻ 的配合物,除Cu(II)配合物外,其余4种配合物均具 有爆燃转爆轰性能,是潜在的起爆药。2021年, Wang 等^[15]通过复分解反应获得配合物[Mg(BTO) (H₂0)₆],其热分解峰高达320.2 ℃,此外研究表明配 合物[Mg(BTO)(H₂O)₆]对 RDX、HMX、CL-20 和 TKX-50 的热分解具有一定的催化作用。镧系金属的4f电 子层结构可以形成多配位键,能与多个BTO²⁻相连。 但以镧系金属作为配位中心的报道较少,2019年, Wang 等^[16]采用水热法合成了一种镧系超分子配合物[Er₂(BTO)₃(H₂O)₈]_n,同时研究了其对高氯酸铵热分解的催化作用。

本研究以BTO²⁻为配体,通过溶剂热法,与不同的镧 系金属硝酸盐Ln(NO₃)₃(Ln=La³⁺、Ce³⁺、Pr³⁺、Sm³⁺、Nd³⁺) 反应制得5种金属含能配合物:[La₂(BTO)₃(H₂O)₈]・ 2H₂O(1)、[Ce₂(BTO)₃(H₂O)₈]・2H₂O(2)、[Pr₂(BTO)₃(H₂O)₈]・ 2H₂O(3)、[Sm₂(BTO)₃(H₂O)₈]・2H₂O(4)和[Nd₂(BTO)₃ (DMF)₄]・6H₂O(5)(DMF=N, N-二甲基甲酰胺),并对 其采用单晶X射线和元素分析进行结构表征。采用 差示扫描量热(DSC)技术研究其热分解性能,计算得 到非等温热分解动力学参数。

1 实验部分

报

1.1 试 剂

根据文献报道的方法^[17-18]自制1,1'-二羟基-5, 5'-联四唑(H₂BTO)。La(NO₃)₃·6H₂O、Ce(NO₃)₃·6H₂O、 Pr(NO₃)₃·6H₂O、Sm(NO₃)₃·6H₂O、Nd(NO₃)₃·6H₂O 均为 分析纯,购自上海阿拉丁试剂有限公司。DMF、无 水乙醇均为分析纯,购自成都科龙试剂有限公司。 所有试剂使用前未经过任何处理。

1.2 样品的制备

注意!H₂BTO属于富氮含能材料,在实验过程中 应小心规范操作,操作过程中需佩戴防静电手环、 护目镜等防护设备。

以H₂BTO为配体,镧系金属离子为金属中心, 采用溶剂热法制备了5种金属配合物。合成路线见 图1。

配合物1的制备:称取0.1 mmol La(NO₃)₃·6H₂O 溶于6 mL体积比为1:5的乙醇和水的混合溶剂中, 随后加入0.1 mmol H₂BTO,室温搅拌20 min,出现白 色悬浮液,将其转移至反应釜中,升温至130℃后恒 温72 h,再以5℃·h⁻¹降至室温。将反应液静置,2周 后析出白色透明颗粒状晶体,基于H₂BTO的产率为 40%。元素分析按C₃H₁₀N₁₂O₈La计算值(%):C 7.49,

H 2.10, N 34.94; 实验值(%): C 7.78, H 2.28, N 34.78。

配合物2的制备方法与配合物1基本一致,以 Ce(NO₃)₃·6H₂O代替La(NO₃)₃·6H₂O。反应完毕后将 无色澄清液静置,2周后析出金黄色颗粒状晶体,基 于H₂BTO的产率为43%。元素分析按C₃H₁₀N₁₂O₈Ce 计算值(%):C7.47,H2.09,N34.85;实验值(%):C 7.68,H2.31,N34.90。

配合物**3**的制备方法与配合物**1**基本一致,以 Pr(NO₃)₃·6H₂O 代替 La(NO₃)₃·6H₂O。反应完毕后将 绿色澄清反应液静置,2周后析出绿色颗粒状晶体, 基于 H₂BTO 的 产 率 为 42%。 元 素 分 析 按 C₃H₁₀N₁₂O₈Pr 计算值(%): C 7.46, H 2.09, N 34.79;实 验值(%): C 7.77, H 1.91, N 34.49。

配合物4的制备方法与配合物1基本一致,以 Sm(NO₃)₃·6H₂O代替La(NO₃)₃·6H₂O。反应完毕后将 淡黄色澄清反应液静置,4周后析出淡黄色棒状晶 体。基于H₂BTO的产率为45%。元素分析按 C₆H₂₀N₂₄O₁₆Sm₂计算值(%):C7.32,H2.05,N34.13; 实验值(%):C7.52,H2.20,N34.55。

配合物5的制备:称取 0.1 mmol Nd(NO₃)₃·6H₂O 溶于4 mL水中,同时称取 0.1 mmol H₂BTO 溶于 2 mL DMF中,将2种溶液混合后室温搅拌20 min,溶 液为淡红色透明溶液,将其转移至反应釜中,升温 至 130 ℃后恒温72 h,以5 ℃·h⁻¹降至室温。将反应 液过滤,滤液静置,4周后析出紫红色颗粒晶体,基于H₂BTO的产率为41%。元素分析按C₉H₂₂N₁₄O₉Nd 计算值(%):C 17.59,H 3.61,N 31.91;实验值(%):C 17.70,H 3.55,N 32.03。

1.3 测试方法

选取合适的待测晶体置于 Bruker D8 Venture 型 X 射线单晶衍射仪进行单晶测试,测试温度为 293 K。根据衍射数据可直接求得化合物的主要原子坐标;采用最小二乘法对结构内非氢原子坐标及各向 异性参数进行精修;所有氢原子均为理论加氢,利 用几何参数对氢原子坐标进行几何优化。采用 TA 公司 Q200 型差示扫描量热仪(DSC)测试样品的热稳 定性,高纯 N₂气氛,样品量约为 0.1 mg,升温速率分 别为 2、5、10、15、20 °C·min⁻¹,温度范围为 50~ 350 °C。

CCDC: 1848729, 1; 1848732, 2; 1843371, 3; 1860383,4; 1860390,5°

2 结果与讨论

2.1 结构表征

金属配合物1~5的晶体学参数和结构优化参数 见表1,部分键长列于表2中。配合物1~5均属于单 斜晶系,空间群均为P2₁/n。如图2a所示,配合物1 的中心La³⁺离子分别与7个氧原子和2个氮原子配

表1 含能金属配合物1~5的晶体学参数和结构优化参数 Table 1 Crystal data and structure refinement parameters of energetic metal complexes 1~5

Complex	1	2	3	4	5
Formula	$\mathrm{C_{3}H_{10}N_{12}O_{8}La}$	$\mathrm{C_{3}H_{10}N_{12}O_{8}Ce}$	$C_{3}H_{10}N_{12}O_{8}Pr$	$C_{3}H_{10}N_{12}O_{8}Sm$	$\mathrm{C_9H_{22}N_{14}O_9Nd}$
Formula weight	481.14	482.35	483.14	492.59	614.65
Size / mm	0.32×0.21×0.14	0.26×0.21×0.11	0.32×0.21×0.15	0.27×0.21×0.12	0.27×0.21×0.13
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/n$
<i>a</i> / nm	1.030 71(14)	1.027 91(5)	1.026 13(7)	1.021 89(5)	0.922 77(6)
<i>b</i> / nm	0.876 12(12)	0.875 18(5)	0.873 81(6)	0.871 14(4)	1.660 49(10)
<i>c</i> / nm	1.578 2(2)	1.569 89(8)	1.563 25(10)	1.551 84(8)	1.462 63(9)
β / (°)	108.132(3)	108.192 0(10)	108.283(2)	108.412 0(10)	107.796(2)
V / nm^3	1.3544(3)	1.341 69(12)	1.330 92(16)	1.310 74(11)	2.133 9(2)
Ζ	4	4	4	4	4
$D_{\rm c} / ({ m g} { m \cdot} { m cm}^{-3})$	2.360	2.388	2.411	2.496	1.913
<i>F</i> (000)	932	936	940	952	1 224
$R_{ m int}$	0.024 0	0.022 7	0.057 5	0.023 0	0.037 6
Unique	3 111	3 094	3 066	3 026	4 895
Reflection collected	26 907	26 645	26 434	18 064	31 644
Restraint	3	0	0	1	1

1532	1532		无	机	化	学	学	报		第37卷
续表	1									
Parame	ter	232		224		22	4		224	315
GOF or	F^2	0.996	1.023		1.0	1.046		1.040	1.014	
R_1^{a} [I>2	$2\sigma(I)$]	0.024 1	0.018 5		0.0	030 4		0.020 5	0.025 2	
wR_2^{b} [I	>2 <i>\sigma(I)</i>]	0.121 3	0.052 2			0.063 6			0.060 1	0.078 2
R_1 (all o	lata)	0.024 4	0.019 1			0.044 2			0.021 0	0.027 3
wR_2 (al	l data)	0.122 0		0.052 6		0.0	067 5		0.060 5	0.027 8

^a $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$; ^b $wR_2 = [\sum w(F_0^2 - F_c^2)^2) / \sum w(F_0^2)^2]^{1/2}$.

表2 含能金属配合物1~5的部分键长

 Table 2
 Selected bond length (nm) of energetic metal complexes 1~5

Complex 1		Com	plex 2	Com	Complex 3		
La1—N1	0.271 3(3)	Ce1—N4	0.282 6(2)	Pr1—N1	0.280 2(4)		
La1—N9	0.284 5(3)	Ce1—N9	0.268 4(2)	$Pr1$ — $N12^{iv}$	0.266 4(3)		
La1-01 ⁱ	0.247 5(2)	Ce1—O1 ⁱⁱⁱ	0.251 3(18)	Pr1—O1 ^v	0.249 2(3)		
La1-02	0.256 5(2)	Ce1-02	0.254 0(17)	Pr1-02	0.252 7(3)		
La1—O3 ⁱⁱ	0.254 0(2)	Ce1-03	0.245 3(18)	Pr1-03	0.244 1(3)		
La1-04	0.255 4(2)	Ce1-04	0.249 3(19)	Pr1-04	0.253 4(3)		
La1-05	0.257 1(2)	Ce1—05	0.247 8(18)	Pr1-05	0.246 2(3)		
La1-06	0.250 6(2)	Ce1—06	0.253 2(17)	Pr1-06	0.247 2(3)		
La1-07	0.252 4(2)	Ce1—07	0.255 1(18)	Pr1-07	0.251 4(3)		
Comp	Complex 4		Complex 5				
Sm1—N1	0.277 0(3)	Nd1—N12 ^{vi}	0.267 4(3)				
$Sm1$ — $N12^{iv}$	0.262 5(2)	Nd1—N4 ⁱⁱ	0.265 3(2)				
$Sm1-O1^{v}$	0.245 7(2)	Nd1—N8	0.269 5(3)				
Sm1-02	0.250 0(2)	Nd1-01	0.243 1(2)				
Sm1-03	0.240 3(2)	Nd1—O2 ⁱⁱ	0.245 7(2)				
Sm1-04	0.241 7(2)	Nd1-03	0.243 3(2)				
Sm1-05	0.249 3(2)	Nd1-04	0.244 1(2)				
Sm1-06	0.242 7(2)	Nd1-05	0.248 1(3)				
Sm1-07	0.247 0(2)	Nd1-06	0.250 3(2)				

Symmetry codes: i - x + 2, -y + 1, -z + 2; ii x + 1/2, -y + 3/2, z + 1/2; iii x - 1/2, -y + 3/2, z - 1/2; iv - x + 1, -y + 1, -z; v x - 1/2, -y + 1/2, z - 1/2; iv - x + 1, -y + 1, -z; v x - 1/2, -y + 1/2, z - 1/2; iv - x + 1, -y + 1, -z; v x - 1/2, -y + 1/2, -y + 1/2, -y + 1/2; iv - x + 1, -y + 1, -z; v x - 1/2, -y + 1/2, -y + 1/2; iv - x + 1, -y + 1, -z; v x - 1/2, -y + 1/2, -y + 1/2; iv - x + 1, -y + 1, -z; v x - 1/2, -y + 1/2, -y + 1/2; iv - x + 1, -y + 1, -z; v x - 1/2, -y + 1/2, -y + 1/2; iv - x + 1, -y + 1, -z; v x - 1/2, -y + 1/2, -y + 1/2; iv - x + 1, -y + 1, -z; v x - 1/2, -y + 1/2, -y + 1/2; iv - x + 1, -y + 1, -z; v x - 1/2, -y + 1/2, -y + 1/2; iv - x + 1, -y + 1, -z; v x - 1/2, -y + 1/2; iv - x + 1, -y + 1, -z; v x - 1/2; iv - x + 1, -y + 1, -z; v x - 1/2; iv - x + 1, -y + 1, -z; v x - 1/2; iv - x + 1, -y + 1, -z; v x - 1/2; iv - x + 1, -y + 1, -z; v x - 1/2; iv - x + 1, -y + 1, -z; v x - 1/2; iv - x + 1, -y + 1, -z; v x - 1/2; iv - x + 1, -y + 1, -z; v x - 1/2; iv - x + 1, -y + 1, -z; v x - 1/2; iv - x + 1/2; iv

位,其中7个氧原子归属于3个BTO²⁻和4个配位水 分子,2个氮原子分别来自2个BTO²⁻的四唑环,并且 每个配位单元中含有1个游离水分子。La³⁺离子与 水形成的配位键键长分别为La1—O4 0.255 4(2) nm、La1—O5 0.257 1(2) nm、La1—O6 0.250 6(2) nm、 La1—O7 0.252 4(2) nm。从配体来看,BTO²⁻基团是 一个失去羟基上的2个质子而带2个负电荷的阴离 子配体。BTO²⁻基团有2种配位模式,分别是O2、 O3ⁱⁱ、N9参与配位的三齿配位和2组O1ⁱ,N1参与配 位的四齿配位。La³⁺离子与三齿BTO²⁻基团配位的 键长分别为La1—O2 0.256 5(2) nm、La1—O3ⁱⁱ 0.254 O(2) nm、La1—N9 0.284 5(3) nm; La³⁺离子与四齿 BTO²⁻基团配位的键长为La1—O1ⁱ 0.247 5(2) nm、

 $v_i - x + 2, -y + 1, -z + 1.$

La1—N1 0.271 3(3) nm。N—N 键长分布在 0.129 5 (2)~0.136 5(2) nm 范围内,介于N—N 单键键长 (0.145 4 nm)与N=N 双键键长(0.124 5 nm)之间。三 齿配位 BTO²⁻的 2个四唑环不共平面,而四齿配位 BTO²⁻的 2个四唑环处于同一平面上。每个金属中 心离子相连的 3个 BTO²⁻由 2个三齿配位的 BTO²⁻配 体和 1个四齿配位的 BTO²⁻配体组成。从空间排布 来看(图 2b),La³⁺通过 BTO²⁻配体双重桥联形成了 2D 层状配合物,La³⁺与三齿 BTO²⁻配体形成 2条链,链与 链之间通过四齿 BTO²⁻配体桥联形成 2D 层状结构。 由于配位水的存在,堆积结构中存在大量氢键,相 邻的 2D 层状结构之间则通过氢键相互作用形成 3D 网状结构。 配合物2、3、4的配位模式和空间排布与配合物 1基本一致,见图S1~S3(Supporting information)。由 图3可知,配合物5的配位结构和空间构型与配合 物1~4明显不同。配合物5中Nd³⁺离子分别与6个 氧原子和3个氮原子配位,且每个配位单元中含有3 个游离水分子。6个氧原子分别属于3个BTO²⁻、2 个DMF分子和1个配位水分子。 配合物1~4的密度分别为2.306、2.388、2.411、 2.496g·cm⁻³。配合物5的密度仅为1.913g·cm⁻³,远 远小于配合物1~4的密度,这是由于配合物5中参 与配位的DMF分子引起的。如表2所示,金属离子 半径越大,金属离子与配位原子(N/O)形成配位键的 键长越小,分子堆积越紧密。

图 3 配合物 5 的配位环境 (a)和沿 b 轴分子结构堆积图 (b) Fig.3 Coordination environment (a) and stacking crystal structure viewed along b axis (b) of complex 5

2.2 热稳定性

为了评价金属配合物 1~4 的热稳定性,采用 DSC 对配合物进行了研究,升温速率均为 10 ℃· min⁻¹,气氛为高纯 N₂,温度范围为 50~350 ℃,样品质 量均小于 0.1 mg(考虑到实验的安全性)。金属配合 物 1~4 的 DSC 曲线见图 4。配合物 1~4 均有游离水 分解过程和热分解过程。配合物 1~4 均有游离水 分别为 284.1、293.1、283.6、278.4 ℃,该过程为配体 受热分解,配合物框架坍塌同时释放热量。配合物 热分解峰的峰型平缓、放热缓慢,这是因为配合物 中含有大量的配位水。

图 4 金属配合物 1~4的 DSC 曲线 Fig.4 DSC curves of metal complexes 1~4

2.3 非等温热分解动力学

为研究金属配合物1~4的热分解反应动力学, 得到其热分解动力学参数,对配合物1~4进行DSC 分析,实验气氛为高纯N₂,样品量约为0.1 mg,升温 速率分别为2、5、10、15、20 ℃·min⁻¹。配合物1~4在 不同升温速率下的分解峰值列于表3。

根据表3中不同升温速率所对应的峰值温度

 T_p ,利用 Kissinger 法^[19]和 Ozawa 法^[20]进行拟合计算。 分别以 $\ln(\beta/T_p)$ 和 $\lg \beta$ 对 $1000/T_p$ 作图,进行线性回归 分析,由斜率计算得到配合物 $1\sim4$ 热分解的活化能 E_a ,由截距计算获得指前因子 A,得到的非等温热分 解动力学参数见表 4。Ozawa 法和 Kissinger 法的计 算结果相近。配合物 $1\sim4$ 热分解的活化能(Kissinger 法)分别为 164.11、182.13、182.70、192.97 kJ·mol⁻¹。

表 3 配合物 1~4在不同升温速率下的 DSC 分解峰值 Table 3 DSC decomposition peaks of complexes 1~4 at different heating rates

β / (°C • min ⁻¹)	Complex 1	Complex 2	Complex 3	Complex 4
2	260.3	269.3	262.9	256.2
5	275.1	281.1	277.8	268.0
10	284.1	293.1	283.6	278.4
15	287.3	295.7	288.6	281.2
20	295.2	299.6	294.5	282.4

表4 配合物1~4的非等温热分解动力学参数

Table 4 Non-isothermal thermal decomposition kinetic parameters of complexes 1~4

Complex $-E_{i}$	Kissir	Kissinger's method			Ozawa's method		
	$E_{\rm a,k}/(\rm kJ{\boldsymbol{\cdot}}\rm mol^{-1})$	$\ln A_{\rm k}$	r	$E_{\rm a, o}$ / (kJ·mol ⁻¹)	$\lg A_{\rm o}$	r	
1	164.11	28.09	0.980 8	164.76	17.25	0.982 7	
2	182.13	31.56	0.984 9	182.01	18.73	0.986 3	
3	182.70	32.15	0.976 1	182.45	18.97	0.978 3	
4	192.97	35.09	0.968 4	192.08	20.21	0.971 1	

3 结 论

(1)以H₂BTO和镧系金属硝酸盐为原料,采用溶剂热法合成了5种金属配合物[La₂(BTO)₃(H₂O)₈]・2H₂O(1)、[Ce₂(BTO)₃(H₂O)₈]・2H₂O(2)、[Pr₂(BTO)₃(H₂O)₈]・2H₂O(3)、[Sm₂(BTO)₃(H₂O)₈]・2H₂O(4)和[Nd₂(BTO)₃(DMF)₄]・6H₂O(5),产率均高于40%,并采用单晶X射线衍射和元素分析对5种配合物进行了结构表征。

(2) 单晶 X 射线衍射表明,5 种配合物均属于单斜晶系, P2₁/n空间群。由于配位 DMF 分子的影响, 配合物 5 的密度(1.913 g·cm⁻³)明显小于配合物 1~4 的密度(依次为 2.306、2.388、2.411、2.496 g·cm⁻³)。

(3) DSC分析表明,配合物1~4均有游离水分解过 程和热分解过程,其热分解峰温分别为284.1、293.1、 283.6、278.4℃;配合物1~4热分解的活化能(Kissinger 法)分别为164.11、182.13、182.70、192.97 kJ·mol⁻¹。

参考文献:

- [1] Li S H, Wang Y, Qi C, Zhao X X, Zhang J C, Zhang S W, Pang S P. Angew. Chem. Int. Ed., 2013,52:14031-14035
- [2] Freis M, Klapötke T M, Stierstorfer J, Szimhardt N. Inorg. Chem., 2017,56:7936-7947
- [3] Szimhardt N, Wurzenberger M H H, Zeisel L, Gruhne M S, Lommel M, Stierstorfer J. J. Mater. Chem. A, 2018,6:16257-16272
- [4] Wurzenberger M H H, Endraß S M J, Lommel M, Klapötke T M, Stierstorfer J. ACS Appl. Energy Mater., 2020,3:3798-3806
- [5] Wang T W, Zhang Q, Deng H, Shang L P, Chen D, Li Y, Zhu S G, Li H Z. ACS Appl. Mater. Interfaces, 2019,11:41523-41530
- [6] Wurzenberger M H H, Braun V, Lommel M, Klapötke T M, Stierstorfer J. Inorg. Chem., 2020,59:10938-10952
- [7] Zhang J C, Zhu Z Y, Zhou M Q, Zhang J H, Hooper J P, Shreeve J M. ACS Appl. Mater. Interfaces, 2020,12:40541-40547
- [8] Tselinskii I, Mel'nikova S, Romanova T. Russ. J. Org. Chem., 2001, 37(3):430-436
- [9] Fischer N, Fischer D, Klapötke T M, Piercey D J, Stierstorfer J. J. Mater. Chem., 2012,22(38):20418-20422

- [10]Shang Y, Jin B, Liu Q Q, Peng R F, Guo Z C, Zhang Q C. J. Mol. Struct., 2017,1133:519-525
- [11]Guo Z Q, Wu Y L, Deng C Q, Yang G P, Zhang J G, Sun Z H, Ma H [16] X, Gao C, An Z W. Inorg. Chem., 2016,55:11064-11071
- [12]Shang Y, Jin B, Peng R F, Liu Q Q, Tan B S, Guo Z C, Zhao J, Zhang Q C. Dalton Trans., 2016,45:13881-13887
- [13]Zhang Z B, Xu C X, Yin L, Wang Z, Yin X, Zhang J G. RSC Adv., 2016,6:73551-73559
- [14]Zhang Q, Chen D, Jing D, Fan G J, He L, Li H Z, Wang W T, Nie F D. Green Chem., 2019,21:1947-1955

- [15]Wang X J, Wang N, Yang Y P, Jin G L, Li Z T, Wang X, Lu Z Y. J. Energy Mater., 2021,39(1):113-124
- [16]Wang C J, Shen J, Zhang J H, Bo J. J. Solid State Chem., 2019,277: 721-726
- [17]Fischer N, Klapötke T M, Reymann M, Stierstorfer J. Eur. J. Inorg. Chem., 2013(12):2167-2180
- [18]Luo L Q, Jin B, Peng R F, Shang Y, Xiao L P C, Chu S J. J. Therm. Anal. Calorim., 2019,135:3005-3013
- [19]Kissinger H E. Anal. Chem., 1957,19:1702-1706
- [20]Ozawa T. Bull. Chem. Soc. Jpn., 1965,38:1881-1886