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Crystal Structures and Magnetic Properties of Ln", Complexes
Based on a Polydentate Schiff Base Ligand
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Abstract: Three new Ln", complexes based on a polydentate Schiff base ligand, namely [Ln,(L),(acac),(CH,0H),] -
2CH;OH (Ln=Sm (1), Gd (2), Ho (3), H,L=pyridine-2-carboxylic acid (1-methyl-3-oxo-butylidene)-hydrazide, Hacac
=acetylacetone), have been synthesized by using solvothermal method. The crystal structures and magnetic proper-
ties of these complexes have been systematically studied. The crystal structures measurement results reveal that
complexes 1-3 are isostructural and each eight-coordinated Ln(ll) ion possesses a square antiprism geometry; the
adjacent central rare earth Ln(l) ions are connected by two w,-O to form a parallelogram [Ln,0,] core. The magnetic
study showed that complex 2 displayed significant magnetic refrigeration property with a larger magnetic entropy
(—AS,,) of 31.9 J- K" -kg™" at AH=70 kOe and T=2.0 K; while complex 3 shows slow magnetic relaxation behavior.
CCDC: 2052182, 1; 2052183, 2; 2052184, 3.
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0 Introduction ists and material scientists not only due to their beauti-
ful and fascinating crystal structures but also because

In recent years, the study of lanthanide - based of the potential applications in functional materials,
complexes has attracted increasing attention of chem- including interesting magnetic properties, lumines-
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cence, gas adsorption, and catalysis"™*. Among these
potential applications of lanthanide - based complexes,
the molecular - based magnetic material is one of the
research hotspots for inorganic chemistry and material
chemists”, and magnetic refrigeration and single-
molecule magnets (SMMs) are particularly attractive®”.
Key to the potential magnetic refrigeration application
of molecular-based magnetic materials is its large mag-
netocaloric effect (MCE)"", and an excellent magnetic
refrigeration material featuring large MCE should
possess negligible magnetic anisotropy and a large
magnetic density"'. Hence, the isotropic Gd(Il) ion with
a high spin state (S=7/2) is the best candidate for
designing and constructing Ln () - based complexes,
which would be a promising magnetic refrigerant mate-
rial to perform significant MCE!"?. Based on this, lots of
polynuclear or high-nuclear Gd(Il)-based clusters with
fascinating structures and larger MCE have been

1181 Tt is worth mention-

reported over the past decade'
ing that Zheng and Long's group has conducted out-
standing work on the magnetic refrigeration materials
of Gd(l)-based clusters"™. These studies promote the
design and synthesis of lanthanide - based complexes

with outstanding and excellent magnetic properties. On

the other hand, lanthanide - based SMMs have caused

" and designing

public attention in recent years
lanthanide-based SMMs with large energy barriers (Uy)
and high blocking temperatures (T}) is a great chal-
lenge™™. Given this, lots of Ln(ll)-based SMMs exhibit-
ing significant magnetic behavior have appeared since
the first Ln(ll)-based SMM (Bu,N)[Tb(Pc),] reported by
Ishikawa et al. in 2003"".

To seek and study the magnetic behaviors of lan-
thanide - based complexes, an attractive polydentate

ligand H,L (Scheme 1) has been selected to construct

lanthanide complexes, and three Ln", complexes

[Lny(L),(acac),(CH,0H),] -2CH,0H (Ln()=Sm (1), Gd

X

N ~ N 0
(0]

Scheme 1  Structure of ligand H,L

(2), and Ho (3), H,L=pyridine - 2 - carboxylic acid (I -
methyl-3-oxo-butylidene)-hydrazide, Hacac=acetylace-
tone) have been synthesized. The magnetic refrigera-
tion and slow magnetic relaxation behavior of 1-3 have

been studied.
1 Experimental

1.1 Material and measurement

Solvents (methanol, dichloromethane) and starting
chemical reagent (Ln(NO,),+6H,0, Ln=Sm, Gd, and Ho)
were purchased commercially and used without further
purification. Acetylacetone and 2 -pyridine carboxylic
acid hydrazide were purchased from Aladdin Reagent
(Shanghai) Co., Ltd. Ln(acac);-2H,0 (Ln=Sm, Gd, and
Ho) was prepared using a reported method”. The ele-
mental analyses (C, H, and N) of complexes 1-3 were
measured on a PerkinElmer 240 CHN elemental ana-
lyzer. Powder X-ray diffraction (PXRD) of complexes 1-
3 were performed using an Ultima IV (Rigaku) with
Cu Ka radiation in a 26 range from 5° to 50°. The oper-
ating voltage and current were 40 kV and 25 mA,
respectively. Thermogravimetric analyses (TGA) of
complexes 1-3 were performed on a TG 209 apparatus
(Netzsch) under an air atmosphere. Magnetic properties
for complexes 1-3 were measured using a Quantum
Design MPMS-XL7 and a PPMS-9 ACMS magnetome-
ter. Diamagnetic corrections were estimated with
Pascal’s constants for all atoms™!.
1.2 Preparation of complexes 1-3

2-Pyridine carboxylic acid hydrazide (0.04 mmol),
Ln(acac);+2H,0 (0.04 mmol, Ln=Sm (1), Gd (2), and
Ho (3)), methanol (8 mL), and dichloromethane (2.0
mL) were enclosed in a 15 mL glass vial, and then the
mixture was stirred at room temperature for about 2.0
h. Whereafter, the mixture was heated to 70 °C and
kept for 48 h, and then the temperature was decreased
to room temperature slowly. Yellow block crystals suit-
able for X-ray diffraction were obtained.

[Sm,(L),(acac),(CH,;OH),]-2CH,0H (1): Yield based
on Sm(acac);*2H,0: 36%. Elemental analysis Caled.
for C;sHy,N(O,,Sm,(%): C 40.66, H 4.89, N 7.91; Found
(%): C 40.64, H 5.03, N 8.00.

[Gd,(L),(acac),(CH;OH),]-2CH,0H (2): Yield based
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on Gd(acac),-2H,0: 32%. Elemental analysis Caled.
for C,sH5,NO,,Gd,(%): C 40.10, H 5.01, N 7.80; Found
(%): C 40.21, H 4.97, N 7.75.
[Ho,(L),(acac),(CH,OH),]-2CH,0H (3): Yield based
on Ho(acac),*2H,0: 41%. Elemental analysis Caled.
for C;sHy,NO,,Ho,(%): C 39.57, H 4.76, N 7.69; Found
(%): C 39.62, H 4.89, N 7.72.
1.3 X-ray crystallography
The X-ray diffraction measurements for complexes
1-3 were performed on a Bruker SMART APEX [l
CCD diffractometer equipped with a graphite mono-
chromatized Mo Ka radiation (A =0.071 073 nm) by

using @-w scan mode. Multi-scan absorption correction
was applied to the intensity data using the SADABS
program. The structures were solved by direct methods
and refined by full - matrix least - squares on F* using
the SHELXTL-2018 program. All non-hydrogen atoms
were refined anisotropically. All the other H atoms
were positioned geometrically and refined using a
riding model. Details of the crystal data and structure
refinement parameters for 1-3 are summarized in Table
1, and selected bond lengths and angles of 1-3 are
listed in Table S1-S3 (Supporting information).
CCDC: 2052182, 1; 2052183, 2; 2052184, 3.

Table 1 Crystal data and structure refinement parameters for complexes 1-3

Parameter 1 2 3
Empirical formula Cy6Hs,NgO,Sm, C3Hs,N0,,Gd, C,sH,N,O,Ho,
Formula weight 1062.46 1075.25 1091.62
T/K 150(2) 293(2) 153(2)
Crystal system Monoclinic Monoclinic Monoclinic
Space group P2 /c P2 /c P2\/c
a/nm 0.773 0(5) 0.777 6(6) 0.765 59(3)
b/ nm 2.118 3(3) 2.1312(6) 2.1172(3)
¢/nm 2.579 3(7) 2.5947(1) 2.574 5(7)
B1(°) 93.961(2) 92.993 0(15) 93.437 5(15)
V/nm? 4.213 8(5) 4.294 6(2) 4.1657(3)

A 4 4 4

Cryst size / mm 0.25%x0.21 x0.14 0.25%0.17 x0.11 0.27 x0.21 x 0.14

D,/ (g-em™) 1.574 1.582 1.639

u/ mm! 2.816 18.867 3.828

Limiting indices -9<h<9, -8<h<9, -9<h<9,
-26 <k <26, -18 <k <26, -26 <k <26,
-32<[0<31 -27<1<32 -32<10<32

Reflection collected 67 691 17 142 52003

Unique 8 647 8364 8552

Parameter 485 485 485

R, 0.0915 0.0422 0.066 8

GOF on F? 1.006 1.084 1.085

Ry, wR, [I>20 (1))
R,, wR, (all data)

0.0452,0.100 2
0.0736,0.1137

0.068 6,0.182 5
0.0713,0.184 5

0.0427,0.095 1
0.060 2, 0.101 7

2 Results and discussion

2.1 Crystal structures of complexes 1-3
Single - crystal X -ray diffraction analyses reveal
that 1-3 are isostructural and crystallize in the mono-

clinic space group P2,/c (Table 1). Hereon, we selected

the structure of 2 as a representative for describing. As
shown in Fig.1, the structure of 2 comprises two Gd(ll)
ions, two L*, two acac™, and two coordinated CH,0OH.
Each central Gd(Il) ion is coordinated by six oxygen
atoms and two nitrogen atoms formed a [N,0O4] coordina-

tion environment. As shown in Fig.S1, the GdI ion is
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coordinated by two nitrogen atoms (N3 and N4) and six
oxygen atoms (02, 03, 04, 07, 08, and 09) of two L.,
one CH,0H and one acac™. The eight-coordinated Gd1
ion possesses a square antiprism geometry which is
confirmed by using SHAPE 2.0 software (Table 2). The
coordination mode of L*" and acac™ are shown in Fig.2.
The two central Gd(Il) ions are connected by two u,-0
atoms forming a parallelogram [Gd,0,] core. In the
[Gd,0,] core, the Gd1---Gd2 distance is 0.392 §(8) nm,
02—Gd1—04 bond angle is 62.201 1(9)°, and the
Gd1—02—Gd2 bond angle is 113.809 2(3)°. Further-
more, the bond distances of Gd—O0 in complex 2 are in
a range of 0.225 0(6)-0.244 5(6) nm, and the Gd1—N3,
Gd1—N4, Gd2—NI1, and Gd2—N6 bond lengths are
0.255 5(8), 0.243 8(7), 0.242 6(7), and 0.254 1(8) nm,
respectively. The O—Gd—O0O bond angles are in a
range of 66.18(19)°-147.9(2)°. These bond lengths and

angles of 2 are compared to those of reported Gd, com-

[24-27]

plexes

H atoms are omitted for clarity

Fig.1 Molecular structure of complex 2 shown with 30%
probability displacement ellipsoids

Table 2 Gd( geometry analysis by SHAPE 2.0 for complex 2

Gd() ion D,, SAPR D,, TDD C,, JBTPR ¢, BTPR D,, JSD
Gdl 2.193 2.379 3.673 2.582 5.883
Gd2 2.185 2211 3.656 2511 5.749

SAPR -8=square antiprism; TDD -8=triangular dodecahedron; JBTPR -8=biaugmented trigonal prism J50; BTPR - 8=biaug-

mented trigonal prism; JSD-8=snub diphenoid J84; The number 8 represents eight-coordinated geometrical configuration.

H atoms of C—H bonds are omitted for clarity

Fig.2 (a) Coordination mode of " in 2; (b) Coordination mode of acac™ in 2

2.2 PXRD pattern and TGA

To prove the phase purities of complexes 1-3, the
crystalline products of these complexes were measured
by PXRD. As shown in Fig.S2, the PXRD patterns of
the crystalline samples of 1-3 were in good agreement
with their simulated ones, which proves the high phase
purity.

To investigate the thermal stabilities of complexes

1-3, TGA was performed under an air atmosphere. As

shown in Fig.S3, the TG curves of 1-3 showed a similar
variation trend. Hereon, we selected the TG curve of
complex 1 for a detailed description. The weight loss of
6.31% (Calcd. 6.02%) between 40 and 294 °C can be
attributed to the loss of two free CH,OH. After that,
complex 1 decomposed gradually.
2.3 Magnetic properties

The magnetic susceptibility data for the Ln", com-

plexes (1-3) were measured with the polycrystalline
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samples during a temperature range of 2.0 to 300.0 K
and under an external magnetic field of 1.0 kOe. The
xul vs T plots for complexes 1-3 are shown in Fig.3. At
300.0 K, the yyT values of 1-3 were 2.40, 15.73, and
28.20 cm’+mol™'-K, respectively. The expected values
for two free Ln(Il) ions are shown as follows: two isolat-
ed Sm(ll) ions (°Hs,, g=2/7) gave 0.95 cm*+mol™-K for
1; two isolated Gd () ions (°S,,, g=2) gave 15.76 cm’+
mol ™ - K for 2; two isolated Ho(l) ions (I, g=4/5) gave
28.14 c¢m’+mol™" K for 3. For 1, as the temperature
decreased, the x,T value slowly declined and reached
the minor value of 0.26 ¢m’+mol™+K at 2.0 K. For 2,
during the temperature range of 20.0-300.0 K, the yyT
value almos remained constant; whereafter, the y,T
value dropped to a minimum of 10.83 c¢cm’+mol™ K at
2.0 K. The downtrend suggests that there is an antifer-
romagnetic interaction between adjacent Gd(ll) ions in
complex 2% For 3, the yy,7T value decreased slowly
from 300 to 50 K, then it decreased quickly to reach
the minimum of 7.01 c¢cm’+mol'-K at 2.0 K. This
behavior may be attributed to the thermal depopulation
of the Ho(ll) Stark sublevels or/and the antiferromagnet-
ic interactions between the adjacent Ho () ions in

complex 3.
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Red solid line stands for the best fitting of complex 2 by using
Eq.1
Fig.3 Temperature dependence of y,,T at 1.0 kOe for 1-3

The Curie - Weiss law was used for fitting the
magnetic susceptibility of 2 (Fig.S4). Two parameters C
(15.83 ¢cm’+mol ™"+ K) and 6 (-0.73 K) were obtained (R
=0.999 78). The small and negative 6 value of 2 further

suggests that there is an antiferromagnetic interaction

between adjacent GA(I) ions in 2°°. For further explor-
ing the magnetic interaction between the adjacent
Gd( ions in complex 2, we fitted the y,T vs T curve of
2 by using the Hamiltonian: ]'}Gdz = —](S?G(INSAG(]Z) -
gMB['}(g(;d] + §Gdz) (1P, and the two significant param-
eters, J=—0.06 cm™ and g=2.05, were obtained. The
negative J value further proves that there is an antifer-
romagnetic coupling between the neighboring Gd (Il
ions in 2.

The magnetization data for complex 2 were
studied at 2.0-10.0 K in a 0-70 kOe field. As depicted
in Fig. 4, the magnetization M for complex 2 rapidly
increased blow 20 kOe and then steadily increased to
14.02NB at 70 kOe, which is very close to the satura-
tion value of 14N for two free Gd(Il) (S=7/2, g=2) ions.

0 . 10 20 30 40 50 60 70
H/kOe

Fig.4 Plots of M vs H at 2.0-10.0 K for 2

[32-34]
, due to

According to the previous literature
the presence of the isotropic Gd(l) ion with a high-spin
ground state, hereon, the magnetocaloric effect of com-
plex 2 was investigated. The maximum magnetic entro-
py change (—AS,,) could be calculated by using the

max.

Maxwell equation: AS,(T) = [[aM (T.H)/oT | ,dH™,

As shown in Fig.5, at AH=70 kOe and T=2.0 K, the
observed —AS,, was 31.9 J-K'-kg™', which was small-
er than the theoretical value of 34.2 J-K™'-kg ™' based
=2RIn(2S+1) (S;;=7/2 and R=

8.314 J-mol™-K™). The difference between experimen-

on the equation: AS,
tal and theoretical magnetic entropy change (—AS, )
may be due to the weak antiferromagnetic interactions
between Gd(Il) ions in complex 2°°. It is worth mention-

ing that the —AS, . of complex 2 was larger than those
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of mostly reported Gd, complexes”™. With the larger
-AS

max

value, complex 2 may be a good candidate for
potential application in magnetocaloric materials.

In order to study the dynamic magnetic behavior
of complex 3, the alternating current (ac) magnetic
susceptibility measurements were performed during a
temperature range of 2.0-15.0 K at various frequencies.
Clear frequency dependence of out-of-phase ( x")
signals was observed which suggests that slow magnetic
relaxation occurred in 3*’. However, no x” peaks were
observed until 7=2.0 K, and Y’ values gradually
increased in the lower temperature region, which can

be ascribed to the quantum tunneling effect (QTE)"".

14
—=— 100 Hz
12 —e— 300 Hz
—a&— 500 Hz
=10} —%— 900 Hz
E —— 1100 Hz
© gl —<— 1500 Hz
& —— 1900 Hz
<
6_
4+
2k

This phenomenon commonly occurred in most Ln () -

based complexes®.
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Fig.5 Plots of =AS, vs T for 2
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Fig.6 Temperature dependence of in-phase ( x') and out-of-phase ( ") components of ac magnetic susceptibility

for 3 in 0 Oe field with an oscillation of 3.0 Oe

To check the quantum tunneling of magnetization

(QTM) effect above 2.0 K in complex 3, under H, =2

—6r

In(z / s)
!
oo
1

" n 1 n 1 1
0.25 0.30 035 040  0.425

T1/K?

Red solid lines represent the best fit of the experimental data to the

Arrhenius law

Fig.7 1Inz vs T plot for complex 3

500 Oe, the variable - temperature ac susceptibilities
were determined. As shown in Fig.S5, remarkable and
peak shapes were observed, which show that the QTE
in complex 3 was pronounced, and the QTM effect was
basically suppressed when it was under an external
2 500 Oe dc field. The In z vs T plot is shown in
Fig.7. The relaxation time 7 obeys the Arrhenius law: 7
=7,exp[AE/(k,T)]. Two key parameters, energy barrier
AE/k,=17.99 K and pre - exponential factor 7,=9.55%
107 s, were obtained. The 7, of complex 3 was consis-
tent with the reported values of 10°-10" s for Ln(ll)-
based SMMs*4,

3 Conclusions

In summary, we have synthesized three new Ln",

complexes [Ln,(L),(acac),(CH,0H),] -2CH,0H (Ln=Sm
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(1), Gd (2), Ho (3)). Complexes 1-3 are all isostructural
and contain a parallelogram [Ln,0,] core. Magnetic
measurements imply that Gd, complex 2 displayed

significant magnetic refrigeration property with a larger

—-AS,. of 31.9 J-K'+-kg" (AH=70 kOe and T=2.0 K);

max

while Ho, complex 3 shows slow magnetic relaxation

behavior.
Supporting information is available at http://www.wjhxxb.cn
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