源于铋玻璃的富氧空位BiOCI光催化材料的原位合成及性能

董文静^{1,2} 任海深² 谢天翼^{*,2} 林慧兴^{*,1,2} (¹上海师范大学化学与材料科学学院,上海 200234) (²中国科学院上海硅酸盐研究所,上海 201800)

摘要:氧空位对光催化材料的可见光吸收范围与电子-空穴分离效率都具有重要影响,铋玻璃内含有丰富的氧空位缺陷。采用盐酸腐蚀铋玻璃原位合成BiOCl光催化材料,研究了玻璃网络外体对氧空位浓度的影响规律,并利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及电子顺磁共振(EPR)对合成的BiOCl材料的结构、形貌以及氧空位浓度进行表征。结果表明,Bi₂O₃-B₂O₃-ZnO系铋玻璃随着网络外体组分的增加,玻璃中的氧空位缺陷增多,原位合成的BiOCl将"继承"玻璃中大量氧空位,在可见光下照射100min时对罗丹明B的降解率可达到93.1%。

关键词:光催化材料; BiOCl; 铋玻璃; 富氧空位
中图分类号: 0614.53⁺2; TB484.5
文献标识码: A
文章编号: 1001-4861(2022)03-0501-09
DOI: 10.11862/CJIC.2022.047

In-Situ Synthesis and Performance of Oxygen Vacancy-Rich BiOCl Photocatalytic Material Derived from Bismuth-Based Glass

DONG Wen-Jing^{1,2} REN Hai-Shen² XIE Tian-Yi^{*,2} LIN Hui-Xing^{*,1,2}

(¹College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China) (²Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China)

Abstract: Oxygen vacancies enact a vital role on the visible light absorption range and electron-hole separation efficiency of the photocatalytic material. Bismuth-based glass is rich in oxygen vacancy defects. BiOCl photocatalytic material was synthesized *in-situ* by hydrochloric acid corrosion of bismuth-based glass, and the influence of the outer body of the glass network on the oxygen vacancy concentration was studied. X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) were used to characterize the structure, morphology, and oxygen vacancy concentration of the synthesized BiOCl material. The results showed that the number of oxygen vacancies of the Bi₂O₃-B₂O₃-ZnO bismuth-based glass increased with the increase of the external body composition of the network. The *in-situ* synthesized BiOCl will "inherit" a large number of oxygen vacancies in the glass. The degradation rate of rhodamine B was as high as 93.1% under visible light for 100 min.

Keywords: photocatalytic materials; BiOCl; bismuth-based glass; oxygen-rich vacancies

光催化作为解决环境和能源危机最有前景的 技术之一,能够将低密度的太阳能转化为高密度的 化学能,并且能够通过光催化反应分解各种污染 物^[1-3]。相比传统用于水污染治理的技术,如吸附、 生物降解以及高温焚烧等,光催化具有价格低廉、 不产生二次污染、反应条件温和等优势^[5-9]。近年

收稿日期:2021-11-01。收修改稿日期:2021-12-15。

国家自然科学基金(No.52002387)资助。

^{*}通信联系人。E-mail:xietianyi@mail.sic.ac.cn,huixinglin@mail.sic.ac.cn

来,由特定的[Bi₂O₂]²⁺层和互层离子或基团组成的氯 氧化铋(BiOCl)具有的化学稳定性、独特的层结构和 易于合成的特点使其备受关注^[10],但其带隙能宽(约 3.5 eV),只有在紫外光(λ<400 nm)条件下才能被激 发,限制了其应用^[11-16]。因此,如何提高BiOCl的可 见光吸收范围成为研究的难点与热点。

光催化材料的能带结构决定了其光吸收波长范围,通过引入氧空位(OV)可以有效调控能隙带宽与电子-空穴的分离效率,从而提高材料在可见光范围内的催化效率^[17-18]。研究表明含有丰富 OV 的BiOCl纳米片在高达 500 nm 的波长下表现出出色的全氟辛酸(PFOA)降解率。随着制备过程中碱源的改变,BiOCl纳米片中 OV 的比例从 0.573 增加到 0.981,BiOCl对 PFOA 降解和脱氟的光催化性能提高了 3~4倍^[19]。

由于玻璃采用高温-淬冷方法,保留了高温阶段的无定形结构,该结构中存在大量的非桥氧;铋玻璃相比硅玻璃具有更长的Bi-O键,因此具有更

加松散的网络结构,可能形成的OV也更多。基于 这个思路,我们以铋玻璃作为铋源,初次通过直接 的盐酸腐蚀法将玻璃中的氧缺陷引入到BiOCl材 料。并且通过添加不同网络外体组分,研究玻璃网 络结构的破坏对BiOCl材料的OV浓度的影响。

1 实验方法

1.1 主要试剂

试剂包括氧化铋(中国医药集团有限公司)、硼酸(BOR Mining Chemical Company,俄罗斯)、氧化锌(安徽省黄山县锦华氧化锌厂)、碳酸锶(上海红蝶化工有限公司)、碳酸钠(上海欧金实业有限公司)和盐酸(阿拉丁)。

1.2 铋玻璃的主要成分

我们在Bi₂O₃-B₂O₃-ZnO (BBZ)玻璃的基础上加 入了2种网络外体SrO和Na₂O组分,原料分别来源 于Na₂CO₃和SrCO₃,玻璃组成设计如表1所示。

表1 铋玻璃的主要成份及含量 Table 1 Main components and contents of bismuth glasses

Sample	Molar fraction / %				
	Bi_2O_3	B_2O_3	ZnO	SrO	Na ₂ O
BBZ	40	30	30	—	—
BBZSr	40	30	20	10	—
BBZSN	40	30	10	10	10

1.3 铋玻璃的制备

铋玻璃的制备采用传统的熔融淬冷方法。分 别称取表1中各组分对应的原料,在球磨机上混合 均匀后900℃熔融45min得到均匀玻璃液,然后再 进行急冷得到玻璃碎片,研磨玻璃碎片得到铋玻 璃粉。

1.4 BiOCl材料的制备

采用一步的酸腐蚀法制备BiOCl材料。分别将 5gBBZ、BBZSr和BBZSN玻璃粉加入100mL6%的 HCl溶液中搅拌2h得到产物。将所得产物用蒸馏 水和乙醇洗涤数次,100℃干燥过夜,分别制得 BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN粉体。

1.5 表征手段

通过X射线粉末衍射仪(XRD,德国,Bruker D8 ADVANCE)对样品进行物相分析,电压40 kV,电流 40 mA,扫描范围10°~80°(2θ),靶材Cu Kα,波长 0.154 06 nm。通过FEIVeriosG4型扫描电子显微镜 (SEM,工作电压 3.0 kV)及JEM-2010型透射电子显 微镜(TEM,工作电压 200 kV)观察样品的微观形貌。 采用傅里叶变换红外光谱仪(FT-IR)和拉曼光谱仪 (Raman)表征材料的化学组分。通过紫外可见光谱 仪(Shimadzu UV-3600)测定样品的紫外可见漫反射 (UV-Vis DRS)谱图,扫描范围为 300~800 nm。通过 电子顺磁共振(EPR)对材料光激发下的活性基团进 行表征。使用荧光光谱仪(PL,FLS980)对材料进行 光致发光测试。

1.6 光催化降解罗丹明(RhB)测试

通过 RhB(10 mg·L⁻¹)在紫外光和可见光照射下 的光催化分解实验来评估 BiOCl 材料的光催化活 性。使用具有 400 nm 截止滤光片和 200~400 nm 石 英滤光片的 300 W 氙灯分别获得可见光和紫外光。 在光催化实验中,将 10 mg BiOCl 光催化剂加入 100 mL RhB 溶液中并置于暗处搅拌,达到吸附--脱附平 衡后再进行照射。在给定时间后,取 3 mL 混合物离 心以除去BiOCl材料。根据RhB在553 nm处的吸光 度^[20-22],通过紫外分光光度计分析确定RhB浓度。

2 结果与讨论

2.1 铋玻璃的结构表征

由图 1a可知,所有铋玻璃的 XRD 图呈现出显著的玻璃衍射特征,表明所制备的玻璃成玻性良好。 从图 1b 的铋玻璃的 FT-IR 谱图可知,玻璃的吸收峰出现在 520、710、920、1 000、1 180 和 1 280 cm⁻¹附近,其中,710 cm⁻¹处的吸收峰强度随玻璃组分的增加不断增大,表明[BO₄]四面体逐渐转变为[BO₃]三角 体^[23]。另外,从拉曼光谱(图1c)中可以看出,铋玻璃的特征峰主要集中在128、416、583、722、924、1250 cm⁻¹。从BBZ玻璃到BBZSN玻璃,416和583 cm⁻¹处的峰强度明显增强,表明[BiO₆]八面体向[BiO₃]三角体转变^[24]。结合红外光谱和拉曼光谱分析,引入SrO和Na₂O作为玻璃网络外体氧化物,增加了玻璃体系游离氧的含量,使玻璃的结构更松散,加入的网络外体更多,玻璃的结构破坏就越严重。因此,与BBZ和BBZSr玻璃相比,BBZSN具有最松散的网络结构,可能引起的氧缺陷也更多。

2.2 BiOCl材料的结构与物相表征

SEM图显示了所制备的BiOCl光催化剂都呈现 出纳米片形状,由基础玻璃BBZ合成的BiOCl-BBZ 材料具有较大的片层结构(图2a),在引入SrO后, BiOCl-BBZSr则呈现不规则的团聚结构(图2b),在随 后的网络外体Na₂O的添加,更大程度地对玻璃的骨 架结构进行破坏,使得所制备的BiOCl-BBZSN材料 具有更小的纳米碎片团聚结构(图2c)。

通过XRD分析确认样品的相纯度和结晶度,结 果如图3所示。由图可知,所有样品的XRD峰均可 以很好地对应四方相BiOCl(PDF No.06-0249),晶格 参数 a=0.3891 nm 和 c=0.7369 nm。图中未观察到 杂质峰,表明所制备的样品纯度高。

为了进一步了解样品的微观结构,我们对 BiOCl-BBZSN进行了TEM分析,如图4a所示。高分 辨率透射电子显微镜(HRTEM,图4b)揭示了纳米片 的高度结晶性和清晰的晶格条纹,晶格间距为 0.275 nm,对应BiOCl(110)面。插图中的选区电子衍 射(SAED)图案中标出的2组相邻点之间的夹角为 45°,与BiOCl光催化剂的(100)和(110)晶面夹角的理 论值一致^[25-26],可以索引到[001]区域轴,表明BiOCl-BBZSN的暴露面是(001)面。

2.3 BiOCI材料的活性基团表征

为了探索BiOCl光催化剂中OV的存在,对其进

图 2 (a) BiOCl-BBZ、(b) BiOCl-BBZSr和(c) BiOCl-BBZSN 光催化剂的 SEM 图 Fig.2 SEM images of (a) BiOCl-BBZ, (b) BiOCl-BBZSr, and (c) BiOCl-BBZSN photocatalysts

图 3 所制备的 BiOCl 光催化剂的 XRD 图 Fig.3 XRD patterns of as-prepared BiOCl photocatalysts

Inset in b: SAED pattern 图 4 BiOCI-BBZSN的(a) TEM图和(b) HRTEM图 Fig.4 (a) TEM image and (b) HRTEM image of BiOCI-BBZSN

行了EPR测试。图5a、5c显示了由3种不同的铋玻 璃制备的 BiOCl 光催化剂的 OV。其中, BiOCl-BBZSN在黑暗和可见光照条件下都表现出最强的 OV信号。此外,比较了BiOCI-BBZSN光催化剂在黑 暗和光照条件下的差异,如图5b所示,其OV信号没 有显著变化,表明OV大部分来源于光催化材料本 身。为了进一步探索 BiOCl 光催化剂 OV 的来源,我 们还对原始铋玻璃进行了OV表征,如图5d所示,3 种铋玻璃在黑暗条件下g=2.003处也显示出强氧信 号,证明制备的BiOCl光催化剂通过简单的一步化 学反应方法保留了玻璃中的氧缺陷。不难看出, BBZSN 玻璃具有最强的 OV 信号,这可能是其松散 的网络结构导致了更多的氧缺陷,这也是BBZSN玻 璃制备的BiOCl-BBZSN光催化剂OV浓度最高的原 因。另外,对盐酸刻蚀前后的BBZSN玻璃和BiOCl-BBZSN 的氧缺陷浓度进行对比分析发现(图 5e),在 黑暗条件下,BiOCl材料的OV峰强几乎与原始铋玻 璃的相同,这进一步表明BiOCI-BBZSN材料的OV 由 BBZSN 玻璃原位引入。

2.4 BiOCl材料的能带结构表征

众所周知,OV的作用之一是调节光催化的带 隙结构^[27-28]。图 6a 显示了所制备的 BiOCl 光催化的 吸收边与 BiOCl-BBZ、BiOCl-BBZSr 相比, BiOCl-BBZSN 的吸收带边缘发生红移现象。图 6b显示了 BiOCl光催化剂带隙能(E_)的变化。值得注意的是, BiOCl-BBZSN的带隙能(2.95 eV)比其他2个样品更 窄,表明OV的存在可以降低带隙值以吸收更多可 见光。为了进一步显示光催化材料的导带和价带 的位置,采用VB-XPS测试所制备样品的VB(价带) 状态总密度。由图 6c 可知,所得的 BiOCl-BBZ、 BiOCl-BBZSr和BiOCl-BBZSN的价带位置(Eve)分别 为2.49、2.62和2.72 eV,另外通过公式: E_{CB}=E_s-E_{VB} 计算了光催化材料的导带位置(E_{cb}),光催化材料的 能带结构如图 6d 所示。光催化剂在降解染料的过 程中需要超氧自由基(•0,-)、羟基自由基(•0H)和空 穴等活性物质,而价带位置越低,氧化性越强,越有

第38卷

利于活性基团的产生和对染料的氧化^[29]。BiOCl-BBZSN材料具有比其他2个样品更低的价带位置,因此可以产生更多的氧活性物质,提高其降解RhB 染料的能力。

2.5 BiOCl材料的降解活性

通过降解实验进一步研究了OV对光催化性能的影响。暗箱处理 30 min 以测试样品对染料的吸

附能力,如图7所示,BiOCl-BBZ、BiOCl-BBZSr和 BiOCl-BBZSN对染料的吸附率分别为7.12%、8.23% 和12.35%。在紫外光照射下,BiOCl-BBZSN、BiOCl-BBZSr和BiOCl-BBZ的RhB降解率分别达到95.7% (35 min)、95.3%(40 min)和93.5%(60 min),表明OV对 可见光下光催化材料的降解有较大影响。所制备 的BiOCl在可见光下仍具有对RhB染料的降解能

图 6 样品的(a) UV-Vis 漫反射光谱、(b) (αhν)^{1/2} vs hν曲线、(c) VB-XPS 谱图和(d) 带隙结构 Fig.6 (a) UV-Vis diffuse reflectance spectra, (b) curves of (αhν)^{1/2} vs hν, (c) VB-XPS spectra, and (d) band gap structures of the samples

图 7 BiOCl 光催化剂在(a) 紫外光和(b) 可见光下的光催化活性

Fig.7 Photocatalytic activities of as-prepared BiOCl photocatalysts under (a) ultraviolet light and (b) visible light

力,这可部分归因于染料敏化作用。在可见光下照射 100 min 时, BiOCl - BBZSN 的降解率可达到

93.1%, 而 BiOCl-BBZ 和 BiOCl-BBZSr 分别只有 72.3%和 54.4%, 这可归因于丰富的 OV 调整了带 隙,增强了材料对可见光的吸收。此外,对不添加 光催化剂的RhB染料进行光降解实验发现,在紫外 和可见光下染料的浓度没有明显的变化,说明染料 的降解是源于样品的光降解作用。OV作为捕获电 子的活性位点,O2和H2O分子可以在OV处与光生 电子反应产生活性氧(ROS)。如图 $8a \ 8b$ 所示,在可 见光照下观察到的 EPR 信号对应 DMPO-·O₂⁻和 DMPO-·OH,其中 BiOCl-BBZSN 的 ROS(·O₂⁻、·OH) 浓度最高,进一步说明 BiOCl-BBZSN 具有最好的光 催化性能。

图 8 所制备 BiOCl的(a) DMPO-•O₂⁻和(b) DMPO-•OH 的 EPR 谱图 Fig.8 EPR spectra of (a) DMPO-•O₂⁻ and (b) DMPO-•OH of as-prepared BiOCl

2.6 BiOCl材料的光电性能表征

光诱导载流子的分离和迁移效率是光催化降 解的重要因素,其主要通过瞬态光电流响应(*I-t*)、电 化学阻抗(EIS)和光致发光光谱(PL)表征。一般认为 光电流密度越高,电子-空穴对分离效率越高^[30]。通 过考察不同催化剂在可见光照条件下产生的光电 流强度,间接说明催化剂的载流子分离效率。实验 结果如图 9a 所示,BiOCI-BBZSN作为光电极所产生 的光电流强度约为 0.2 μA·cm⁻²,分别约为 BiOCI-BBZSr和 BiOCI-BBZ 的 2 倍和 6 倍。这些研究结果 进一步说明了富氧空位的引入提高了 BiOCI-BBZSN 中光生载流子的分离迁移效率,有助于光催化活性的提高。此外,由图9b可知,与BiOCl-BBZ和BiOCl-BBZSr光催化剂相比,BiOCl-BBZSN具有更小的EIS半径,这意味着载流子迁移到表面的阻力更小。另外,使用PL谱图来确认电荷复合率(图9c),较低的PL强度和较长的寿命与较低的电荷载流子复合率有关。BiOCl-BBZSN在468 nm附近的发光强度明显最弱,表明由BBZSN铋玻璃制备的BiOCl具有更丰富的OV,可以极大地促进光诱导载流子的空间分离,减少电子-空穴对的复合,从而进一步提高光催化剂的降解性能。

图 9 BiOCl 光催化剂的(a) 瞬态光电流响应、(b) EIS 谱图和(c) PL 谱图 Fig.9 (a) Transient photocurrent responses, (b) EIS spectra, and (c) PL spectra of BiOCl photocatalysts

3 结 论

采用简单的一步化学反应法制备富氧空位的 BiOCl光催化剂。实验结果表明,光催化剂的OV主 要源于玻璃物种的原始氧缺陷。其中,用BBZSN玻 璃制备的BiOCl-BBZSN光催化剂染料的降解率最 高,这是因为BBZSN玻璃中引入了更多的网络外 体,使玻璃结构最松散,引起更多的氧缺陷。富氧 缺陷的存在调节了BiOCl材料的能带结构并且通过 捕获电子加速了电子-空穴对的分离,从而改善材 料的光催化降解性能。该研究在制备方法和所用 铋原料方面均具有创新性,可为高效光催化剂的工 业化大规模制备作出贡献。

参考文献:

- [1]Li G B, Huang S Q, Zhu N W, Yuan H P, Ge D D, Wei Y C. Defect-Rich Heterojunction Photocatalyst Originated from the Removal of Chloride Ions and Its Degradation Mechanism of Norfloxacin. *Chem. Eng. J.*, **2021,421**:127852-127864
- [2]Kuila A, Saravanan P, Bahnemann D, Wang C. Novel Ag Decorated, BiOCl Surface Doped AgVO₃ Nanobelt Ternary Composite with Z -Scheme Homojunction-Heterojunction Interface for High Prolific Photo Switching, Quantum Efficiency and Hole Mediated Photocatalysis. *Appl. Catal. B*, 2021,293(15):120224-120240
- [3]Zhang L, Li Y H, Li Q, Fan J J, Carabineiro S, Lv K. Recent Advances on Bismuth-Based Photocatalysts: Strategies and Mechanisms. *Chem. Eng. J.*, 2021,419(4):129484-129506
- [4]Huang Y W, Zhang N, Wu Z J, Xie X Q. Artificial Nitrogen Fixation over Bismuth - Based Photocatalysts: Fundamentals and Future Perspectives. J. Mater. Chem. A, 2020,8(10):4978-4995
- [5]Wang H X, Liao B, Lu T, Ai Y L, Liu G. Enhanced Visible-Light Photocatalytic Degradation of Tetracycline by a Novel Hollow BiOCl@CeO₂ Heterostructured Microspheres: Structural Characterization and Reaction Mechanism. J. Hazard. Mater., 2020,385:121552-121561
- [6]Deng F, Luo Y B, Xia B H, Luo X B, Luo S L, Dionysiou D. Efficient Toxicity Elimination of Aqueous Cr (W) by Positively-Charged BiOCl_xI_{1-x}, BiOBr_xI_{1-x} and BiOCl_xBr_{1-x} Solid Solution with Internal Hole-Scavenging Capacity via the Synergy of Adsorption and Photocatalytic Reduction. J. Hazard. Mater., 2020,383(5):121127-121140
- [7]Eshaq G, Wang S B, Sun H Q, Sillanpää M. Core/Shell FeVO₄@BiOCl Heterojunction as a Durable Heterogeneous Fenton Catalyst for the Efficient Sonophotocatalytic Degradation of *p*-Nitrophenol. Sep. Purif. Technol., 2020.231(16):115915-115931
- [8]Huang S Q, Li L, Zhu N W, Lou Z Y, Liu W Q, Cheng J H, Wang H M, Luo P X, Wang H. Removal and Recovery of Chloride Ions in Concentrated Leachate by Bi(III) Containing Oxides Quantum Dots/Two-Dimensional Flakes. J. Hazard. Mater., 2020,382(15):121041-121051

[9]Wang B, Di J, Lu L, Yan S C, Liu G P, Ye Y Z. Sacrificing Ionic Liquid-Assisted Anchoring of Carbonized Polymer Dots on Perovskite-like PbBiO₂Br for Robust CO₂ Photoreduction. *Appl. Catal. B*, **2019**, **254** (5):551-559

报

- [10]Fan K H, Yu C, Chen S T, Lan S Y, Zhu M S. Metallic Bi Self-Deposited BiOCl Promoted Piezocatalytic Removal of Carbamazepine. Surf. Interfaces, 2021,26:101335-101343
- [11]Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Yubuta K. Novel g-C₃N₄ Nanosheets/CDs/BiOCl Photocatalysts with Exceptional Activity under Visible Light. J. Am. Ceram. Soc., 2019,102(3):1435-1453
- [12]Li R J, Luan Q J, Dong C, Dong W J, Tang W, Wang G, Lu Y F. Light-Facilitated Structure Reconstruction on Self-Optimized Photocatalyst TiO₂@BiOCl for Selectively Efficient Conversion of CO₂ to CH₄. Appl. Catal. B, 2021,286(5):119832-119843
- [13]Mei J, Tao Y, Gao C, Zhu Q, Zhang H Y, Yu J, Fang Z, Xu H, Wang Y H, Li G S. Photo-Induced Dye-Sensitized BiPO₄/BiOCl System for Stably Treating Persistent Organic Pollutants. *Appl. Catal. B*, **2021**, **285**(15):119841-119852
- [14]Wu S S, Yu X, Zhang J L, Zhang Y M, Zhu Y, Zhu M S. Construction of BiOCl/CuBi₂O₄ S-Scheme Heterojunction with Oxygen Vacancy for Enhanced Photocatalytic Diclofenac Degradation and Nitric Oxide Removal. *Chem. Eng. J.*, 2021,411(1):128555-128567
- [15]Hussain M, Mehmood R, Azhar U, Wang J N, Song L H. BiOCl-Coated UiO-66-NH₂ Metal-Organic Framework Nanoparticles for Visible-Light Photocatalytic Cr(VI) Reduction. ACS Appl. Nano Mater., 2021, 4(4):4037-4047
- [16]Shen T, Shi X K, Guo J X, Li J, Yuan S D. Photocatalytic Removal of NO by Light - Driven Mn₃O₄/BiOCl Heterojunction Photocatalyst: Optimization and Mechanism. *Chem. Eng. J.*, **2021**,408(15):128014-128028
- [17]Shahid M, Mehmood R, Athar M, Hussain J, Wei Y W, Khaliq A. BiOCl Nanoplates Doped with Fe³⁺ Ions for the Visible-Light Degradation of Aqueous Pollutants. ACS Appl. Nano Mater., 2020,4(1):746-758
- [18]Zhan G M, Li j, Hu Y, Zhao S X, Gao S Y, Jia F L, Zhang L Z. The Surface Hydroxyl and Oxygen Vacancy Dependent Cr(VI) Adsorption Performance of BiOCl. *Environ. Sci. Nano*, **2020**,7(5):1454-1463
- [19]Song Z, Dong X L, Fang J D, Xiong G H, Wang N, Tang X M. Improved Photocatalytic Degradation of Perfluorooctanoic Acid on Oxygen Vacancies - Tunable Bismuth Oxychloride Nanosheets Prepared by a Facile Hydrolysis. J. Hazard. Mater., 2019, 377(5): 371-380
- [20]Jiang Z, Xiao C, Yin X Y, Xu L G, Liu C L, Wang H L. Facile Preparation of a Novel Bi₂₄O₃₁Br₁₀/Nano ZnO Composite Photocatalyst with Enhanced Visible Light Photocatalytic Ability. *Ceram. Int.*, 2020,46(8):10771-10778
- [21]Zhang Z J, Wang W Z, Shang M, Yin W Z. Photocatalytic Degradation of Rhodamine B and Phenol by Solution Combustion Synthesized BiVO₄ Photocatalyst. *Catal. Commun.*, 2010,11(11):982-986
- [22]赵晶晶, 张正中, 陈小浪, 王蓓, 邓近远, 张蝶青, 李和兴. 微波诱导组装 CuS@MoS,核壳纳米管及其光催化类芬顿反应研究. 化学

学报, 2020,78(9):961-967

ZHAO J J, ZHANG Z Z, CHEN X L, WANG B, DENG J Y, ZHANG D Q, LI H X. Microwave - Induced Assembly of CuS@MoS₂ Core - Shell Nanotubes and Study on Their Photocatalytic Fenton - like Reactions. *Acta Chim. Sinica*, **2020**,**78**(9):961-96

- [23]Hashimoto T, Shimoda Y, Nasu H, Ishihara A. BiOCl-Coated UiO-66-NH₂ Metal-Organic Framework Nanoparticles for Visible-Light Photocatalytic Cr(W) Reduction. J. Am. Ceram. Soc., 2011,94(7):2061 -2066
- [24]Chen J Q, Li Y F, Miao W L, Lei Q, Li M Y. Dependence of Glass Transition on the Structure in Bi - B - Zn Oxide Glass. J. Alloys Compd., 2018,742(25):151-158
- [25]Ren Y H, Zou J H, Jing K Q, Liu Y Y, Guo B B, Song Y J, Yu Y, Wu L. Photocatalytic Synthesis of *N*-benzyleneamine from Benzylamine on Ultrathin BiOCl Nanosheets under Visible Light. *J. Catal.*, **2019**, **380**:123-131
- [26]Hou J H, Dai D, Wei R, Wu X G, Wang X Z, Tahir M, Zou J J. Narrowing the Band Gap of BiOCl for the Hydroxyl Radical Generation

of Photocatalysis under Visible Light. ACS Sustainable Chem. Eng., 2019,7(19):16569-16576

- [27]Phasayavan W, Japa M, Pornsuwan S, Tantraviwat D, Kielar F. Oxygen-Deficient Bismuth Molybdate Nanocatalysts: Synergistic Effects in Boosting Photocatalytic Oxidative Coupling of Benzylamine and Mechanistic Insight. J. Colloid Interface Sci., 2021,581(1):719-728
- [28]Wei Z, Li W L, Hu J S, Ma X G, Zhu Y F. Interfacial Internal Electric Field and Oxygen Vacancies Synergistically Enhance Photocatalytic Performance of Bismuth Oxychloride. J. Hazard. Mater., 2021, 402(15):123470-123479
- [29]Zhu X W, Yang J M, Zhu X L, Yuan J J, Zhou M. Exploring Deep Effects of Atomic Vacancies on Activating CO₂ Photoreduction via Rationally Designing Indium Oxide Photocatalysts. *Chem. Eng. J.*, 2021,422(15):129888-129897
- [30]Zhao H, Liu X, Dong Y M, Xia Y M, Wang H J. A Special Synthesis of BiOCl Photocatalyst for Efficient Pollutants Removal: New Insight into the Band Structure Regulation and Molecular Oxygen Activation. Appl. Catal. B, 2019,256(5):117872-117881