综选

高效、宽带发射有机--无机金属卤化物荧光材料

赫世辉 赵 静* 刘泉林 (北京科技大学材料科学与工程学院,北京 100083)

摘要:有机-无机金属卤化物作为一种新兴的发光材料,由于其高的发光效率以及宽的发射光谱等优点受到广泛关注。本文 以有机-无机金属卤化物高效荧光材料为对象,根据金属阳离子种类对材料进行归类,探讨其高效发光机理,并提出改善该类 材料发光效率的方法。总体而言,对于此类荧光材料的研究还处于起步阶段,其发光机理仍然存在争议,本文对当前主流发光 机理进行了总结。最后,对于有机-无机金属卤化物荧光材料的发展前景进行了展望,旨在进一步推动该类材料在荧光转换 发光二极管等领域的应用。

关键词:金属卤化物;杂化材料;宽带发射;荧光材料 中图分类号:TQ174 文献标识码:A 文章编号:1001-4861(2022)07-1209-17 DOI:10.11862/CJIC.2022.107

High-Efficiency and Broad-Spectrum Emitting Organic-Inorganic Metal Halide Photoluminescent Materials

HE Shi-Hui ZHAO Jing* LIU Quan-Lin

(College of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: Organic - inorganic metal halides, as an emerging photoluminescent material, have received extensive attention due to their high photoluminescence quantum yield and broad-spectrum emission. This paper focuses on organic-inorganic metal halide high-efficiency photoluminescent materials, classifies the materials according to the types of metal cations, discusses their high-efficiency luminescent mechanism, and proposes methods to improve the luminous efficiency of such materials. In general, the research on such photoluminescent materials is still in its infancy, its light-emitting mechanism is still controversial, and current mainstream light-emitting mechanisms are summarized. Finally, the development prospects of organic-inorganic metal halide photoluminescent materials are prospected, aiming to further promote the application of this type of material in the field of phosphor-converted light-emitting diodes.

Keywords: metal halide; hybrid material; broad-spectrum emission; photoluminescent material

0 引 言

有机-无机金属卤化物(OIMHs)半导体材料是目前研究的热点,其作为发光材料、太阳能电池材

料、非线性光学材料、辐射探测器材料等在光电领域有着广泛的应用前景^[1]。目前,照明及显示背光 源主要是蓝光二极管(LED)结合荧光粉产生所需要 的光色。现在应用的荧光粉中都需要引入稀土元

收稿日期:2021-12-08。收修改稿日期:2022-03-24。 国家自然科学基金(No.51972021,52073003)资助。 *通信联系人。E-mail:jingzhao@ustb.edu.cn

素作为发光中心,为了减少对稀土元素的依赖, OIMHs凭借其优异的发光性能,成为当前发光领域 研究的关注点。OIMHs的优越性主要体现在高的 发光量子效率(PLQY)^[2]和宽谱发射^[3]两方面。 OIMHs是实现单一组分白光发射LED的有力候选 材料,通过组分调控可实现单一组分发射光谱覆盖 整个可见光区^[4]。其成功应用将解决多组分荧光粉 在照明中由于自吸收引起的效率降低,以及随使用 时间推移,降解速率不同所导致的光色偏差问题。

OIMHs 与杂化钙钛矿材料联系紧密, 三维(3D) 钙钛矿结构中八面体高度有序,结构刚性强。3D钙 钛矿结构的通式为ABX,,其中A是甲基铵(MA)、甲 脒(FA)或铯(Cs), B是Pb²⁺、Sb³⁺、Sn²⁺、Bi³⁺等金属离子, X是一种或多种卤化物(Cl、Br或I),它由无限[BX₆]⁴⁻ 八面体通过角共享和A位阳离子占据的空隙空间构 成的3D框架。形成的3D钙钛矿结构是直接带隙半 导体,在其中价带最大值(VBM)的特定反键特性和 导带最小值(CBM)中的自旋轨道效应仅形成封闭在 导带或价带中的浅陷阱¹³。由于晶格常数的改变, FA大于MA, MA又大于Cs, A位阳离子的选择改变 了带隙,导致从FA到MA再到Cs的带隙增加[1.5]。随 着有机物阳离子的增加,带隙也会相应地增加。因 此,3D钙钛矿结构中带隙很窄且不存在自陷态激子 (STE),使其无法形成宽带发射。目前报道的化合物 CsPbX₃(X=Cl、Br或I)钙钛矿纳米晶,PLQY最高可达 90%,但是均为窄带发射,其半峰宽最高为35 nm^[6]。 MAPbX₃(X=Cl、Br或I)也为窄带发射^[7]。

OIMHs与传统钙钛矿结构ABX₃的最大区别在 于A位阳离子不再是简单的无机或小体积有机阳离 子^[8],而是换成了大的有机阳离子(C₉NH₂₀⁺、C₇NH₉⁺ 等)^[9];B位的金属阳离子包括最外层具有不同电子 组态的+1、+2、+3、+4价离子;X位为卤素离子。值 得注意的是,低维度的OIMHs中B位和X位结合形 成的多面体,不再局限于八面体结构,还有三面体、 四面体、跷跷板、金字塔以及多核聚集体等结构。

本文首先按照金属阳离子的最外层电子层分 布将OIMHs发光材料分为3类(ns²、d¹⁰、d²)。然后,讨 论OIMHs发光机理,包括STE发光、ns²孤立中心发 光、Mn²⁺孤立中心发光以及混合机理。最后,重点讨 论了提高OIMHs的PLQY的方法并对该系列化合物 的发展前景进行了展望。

1 高效发光OIMHs材料的分类

1.1 ns²系列

含有 ns²电子的阳离子包括 Pb²⁺、Bi³⁺、Sn²⁺、Sb³⁺ 等。ns²离子在光激发过程中表现出 ns²孤对电子跃 迁特性。

1.1.1 6s²系列

6s²系列金属阳离子中包括 Pb²⁺和 Bi³⁺等,该系 列杂化金属卤化物的发光主要来自无机基团,其中 孤对电子会引起激发态结构畸变,降低激子的输运 能力。使运输过程中造成的复合减弱,相应的非辐 射跃迁就会降低,其 PLQY 则会增加¹⁰。但是受限 于畸变程度较低,导致其 PLQY 整体不高。通常通 过掺杂或者形成多聚体发光中心的形式来调整结 构,进而提高其 PLQY。

Ma课题组^{[11}较早合成了高PLQY的C₄N₂H₁₄PbBr₄, 其晶体结构如图 1a 所示。该化合物为一维(1D)结构,2个八面体通过共边连接形成双八面体链,其单 晶在紫外灯照射下呈现蓝白光,PLQY约20%。另 外,Zhang课题组报道了(2cepiH)PbBr₃^[12],如图 1b 所 示,其由共面 PbBr₆⁴⁻八面体组成 1D 无限[PbBr₃]^{*-}链

图 1 (a) $C_4N_2H_{14}PbBr_4^{[11]}$ 和(b) (2cepiH)PbBr_3^{[12]}的晶体结构 Fig.1 Crystal structures of (a) $C_4N_2H_{14}PbBr_4^{[11]}$ and (b) (2cepiH)PbBr_3^{[12]}

状结构,其PLQY为16.8%。其它Pb²⁺基的高效荧光 材料如表1所示。Bi³⁺基的OIMHs研究很少^[13-16],其 存在形式主要是八面体[BiX₆]³⁻,目前报道的化合物 的PLQY都很低,即使形成二聚体^[17-18][Bi₂X₆]³⁻、 [Bi₂X₁₀]⁴⁻、[Bi₂X₁₁]⁵⁻, PLQY仍然很低。因此,对于追求高效发光材料而言,以Bi³⁺作为中心阳离子的化合物有待进一步研究。

	表 1 6s ² 系列 OIMHs 的无机结构单元和主要发光性质参数
Table 1	Inorganic unit structure and main luminescent property parameters of 6s ² series OIMHs*

Inorganic unit structure	Compound	Abbr.	$\lambda_{_{ m em}}$ / nm	PLQY	Ref.
$[\mathrm{PbX}_4]^{2-}(\mathrm{X=Cl},\mathrm{Br})$	$\mathrm{C_4N_2H_{14}PbBr_4}$	—	475	20%	[11]
	$(2cepiH)PbBr_3$	2cepi	583	16.8%	[12]
	$(EDBE)[PbBr_4]$	EDBE	573	9%	[19]
	$Bmpip_2PbBr_4$	Bmpip	520	24%	[20]
	$[PP14]_2[PbBr_4]$	PP14	470	28.21%	[21]
	$(C_{13}H_{19}N_4)_2PbBr_4$	—	460	40%	[22]
	$(\mathrm{C_8NH_{12}})_2\mathrm{PbBr_4}$	—	426	15%	[23]
	$(\mathrm{C_4H_9NH_3})_2\mathrm{PbBr_4}$	—	406	26%	[24]
$[\mathrm{PbX}_6]^{4-}(\mathrm{X=Cl},\mathrm{Br})$	$(\mathrm{C_3N_3H_{11}O)_2PbBr_6}{\boldsymbol{\cdot}}4\mathrm{H_2O}$	—	568	9.6%	[25]
	$\mathrm{C_5H_{16}N_2Pb_2Br_6}$	—	550	10%	[26]
	$[\mathrm{H_2BPP}]\mathrm{Pb_2Br_6}$	BPP	524	8.1%	[27]
	[DTHPE] _{0.5} PbCl ₃	DTHPE	458	6.99%	[28]
	$\rm TMHDAPb_2Br_6$	TMHDA	565	12.8%	[29]
	$(C_{20}H_{18}N_2)(Pb_3Cl_8)$	—	682	6.4%	[30]
	$(\mathrm{TDMP})\mathrm{PbBr}_4$	TDMP	372	45%	[31]
	$(2,6\text{-}\mathrm{dmpz})_3\mathrm{Pb}_2\mathrm{Br}_{10}$	2,6-dmpz	585	12%	[9]
	$({\rm C_9NH_{20}})_6{\rm Pb_3Br_{12}}$	—	522	12%	[32]

*Abbr.: abbreviation; 2cepi=1-(2-chloroethyl)-piperidine; EDBE=2,2'-(ethylenedioxy)bis(ethylamine); Bmpip=1-butyl-1-methylpiperidinium; PP14=*N*-butyl-*N*-methylpiperidinium; BPP=1,3-bis(4-pyridyl)-propane; DTHPE= $C_{10}N_4H_{18}$; TMHDA=*N*,*N*,*N'*,*N'*-tetramethyl-1,6-hexane-diammonium; TDMP=*trans*-2,5-dimethylpiperazine; 2,6-dimethylpiperazine; λ_{em} : position of emission peak.

1.1.2 5s²系列

含有5s²孤对电子的金属阳离子有Sn²⁺、Sb³⁺和 Te⁴⁺,虽然5s²和6s²杂化金属卤化物的基态电子结构 相似,但是其孤对电子的立体活性和结构可调性都 比6s²更好,其中化学活性较高的Sn²⁺孤对电子导致 该系列化合物激发态结构畸变更强,斯托克斯 (Stokes)位移更大。大的Stokes位移可以减少激发和 发射之间的光谱重叠,从而限制了激发能的共振传 递。如果不满足谐振条件,激子转移需要声子辅 助,从而显著降低能量传输效率。激子迁移的抑制 降低了激子遇到缺陷的概率,从而降低了非辐射复 合率,提高了光致PLQY。温度的升高使激发和发 射带变宽^[10,33-34]。

Fan 课题组^[35]合成的(C₁₀H₂₈N₄Cl₂)SnCl₄·2H₂O的 PLQY高达92.3%,其中Sn²⁺形成四面体结构[SnCl₄]²⁻ (图 2a)。Ma课题组^[36]合成出化合物(C₄N₂H₁₄Br)₄SnBr₆, 其中Sn²⁺形成八面体配位结构[SnBr₆]⁴⁻,其PLQY接 近 100%(图 2b)。这些研究结果说明 Sn²⁺替代 Pb²⁺在 降低材料毒性的同时有效提高了 PLQY,但是 Sn²⁺稳 定性较低,易被氧化为 Sn⁴⁺,制约了其进一步发展。 相较而言,Sb³⁺的稳定性更高,其主要结构为金字塔 型 [SbX₅]²⁻和八面体型 [SbX₆]³⁻。统计发现,含有 [SbX₅]²⁻的 OIMHs 的 PLQY 更高一些(表 2)。Ma 课题 组^[36]合成出(C₉NH₂₀)₂SbCl₅,其在紫外灯下呈现黄色, PLQY 接近于 100%(图 2c)。关于 Te⁴⁺的研究较少,其 主要是以八面体[TeX₆]⁴⁻形式存在。Kundu 课题组^[37] 报 道 了 (BzTEA)₂TeCl₆,其在紫外灯下呈现橙色, PLQY 为 15%(图 2d)。总体而言, 5s²体系 PLQY 较 高,是研究高效发光材料的重点。

1.2 d¹⁰系列

 d^{10} 系列金属阳离子也是OIMHs发光材料研究的重点,包括Ag⁺、Cu⁺、Cd²⁺、Zn²⁺、In³⁺、Sn⁴⁺等。

其中,研究较多的是 In^{3+} 、 Zn^{2+} 和 Cu^{+} 。 In^{3+} 存在 八面体 $[InX_6]^{3-}$ 和四面体 $[InX_4]^{-}$ 两种配位形式。

图 2 (a) (C₁₀H₂₈N₄Cl₂)SnCl₄·2H₂O^[35]、(b) (C₄N₂H₁₄Br)₄SnBr₆^[36]、(c) (C₉NH₂₀)₂SbCl₅^[36]和(d) (BzTEA)₂TeCl₆^[37]的晶体结构 $Fig. 2 \quad Crystal \ structures \ of \ (a) \ (C_{10}H_{28}N_4Cl_2)SnCl_4 \cdot 2H_2O^{[35]}, \ (b) \ (C_4N_2H_{14}Br)_4SnBr_6^{[36]}, \ (c) \ (C_9NH_{20})_2SbCl_5^{[36]}, \ and \ (d) \ (BzTEA)_2TeCl_6^{[37]}, \ (b) \ (C_4N_2H_{14}Br)_4SnBr_6^{[36]}, \ (c) \ (C_9NH_{20})_2SbCl_5^{[36]}, \ (d) \ (BzTEA)_2TeCl_6^{[37]}, \ (d) \ (BzTEA)_2TeCl_6^{[37]}, \ (d) \ (BzTEA)_2TeCl_6^{[37]}, \ (d) \ (d) \ (BzTEA)_2TeCl_6^{[37]}, \ (d) \ ($

	表 2 5s ² 系列 OIMHs 的无机结构单元和主要发光性质参数
Table 2	Inorganic unit structure and main luminescent property parameters of 5s ² series OIMHs

Inorganic unit structure	Compound	Abbr.*	$\lambda_{_{ m em}}$ / nm	PLQY	Ref.
$[\mathrm{SnX}_4]^{2\text{-}}(\mathrm{X=Cl},\mathrm{Br},\mathrm{I})$	$Bmpip_2SnBr_4$	Bmpip	665	75%	[20]
	$(OCTAm)_2SnBr_4$	OCTAm	600	95%±5%	[38]
	$(OCTAm)_2SnI_4$	OCTAm	670	41%	[38]
	$(C_{10}H_{28}N_4Cl_2)SnCl_4\boldsymbol{\cdot} 2H_2O$	—	639	92.3%	[35]
[SnX ₆] ⁴⁻ (X=Cl, Br, I)	$(\mathrm{C_{10}H_{28}N_4})\mathrm{SnBr_6}{\boldsymbol{\cdot}}4\mathrm{H_2O}$	_	530	61.7%	[35]
	$(\mathrm{C_4N_2H_{14}Br})_4\mathrm{SnBr}_6$	—	570	95%±5%	[36]
	$(\mathrm{C_4N_2H_{14}I})_4\mathrm{SnI_6}$	—	620	75%±4%	[36]
	$(\mathrm{C_6H_{18}N_2})_3\mathrm{SnBr_8}$	—	601	86%±2%	[39]
	$ODASnBr_4$	ODA	570-608	83%±4%	[40]
	$(\mathrm{C_8H_{14}N_2})_2\mathrm{SnBr_6}$	—	507	36%±4%	[41]
	[BMIm][Sn(AlCl ₄) ₃]	BMIm	448	51%	[42]
	[BMPyr][Sn(AlCl ₄) ₃]	BMPyr	453	76%	[42]
$[SbX_5]^{2-}$ (X=Cl, Br)	$(C_9NH_{20})_2SbCl_5$	_	590	98%±2%	[36]
	$(Ph_4P)_2SbCl_5$	Ph_4P	648	87%	[43]
	$(TTA)_2SbCl_5$	TTA	625	68%	[44]
	$(TEBA)_2SbCl_5$	TEBA	590	72%	[44]
	TPP_2SbBr_5	TPP	682	33%	[45]
	$(\text{PPN})_2\text{SbCl}_5$	PPN	635	98.1%	[46]
[TeX ₆] ²⁻ (X=Cl, Br)	$(BzTEA)_2TeCl_6$	BzTEA	610	15%	[37]

*OCTAm=n-Octylamine; ODA=1,8-octanediamine; BMIm=1-butyl-3-methylimidazolium; BMPyr=1-butyl-1-methyl-pyrrolidinium; Ph₄P=tetraphenylphosphonium; TTA=tetraethylammonium; TEBA=benzyltriethylammonium; TPP=tetraphenylphosphonium; PPN= bis (triphenyl phosphoranylidene) ammoniu; BzTEA = benzyl triethyl ammonium.

 $(PMA)_{3}InBr_{6}$ 具有 0D 结构,含有 $[InBr_{6}]^{3-}$ 八面体,PLQY 为 35%,其发射光颜色为橙色(图 3a)^[47]。RInBr₄含有 孤立的 $[InBr_{4}]^{-}$ 四面体,PLQY 为 16.36%,其发射光颜 色为蓝色(图 3b)^[48]。Zn²⁺多以四面体结构 $[ZnX_{4}]^{2-}$ 形 式存在^[49],Ma课题组^[50]合成的 TPP₂ZnCl₄具有优良的 长余辉性能,PLQY 为 28.8%。Tang 团队^[51]合成的 (C₁₆H₃₆N)CuI₂中含有 $[Cu_{2}X_{4}]^{2-}$ 二聚体,PLQY 达到 54.3%(图 3c)。Zhang 课题组^[52]合成的 Hmta[(Hmta) Ag₄I₄]结构由四面体 Ag₄I₄单元和 Hmta 交替排列组 成,PLQY 达到 18.5%。

对于空气和热稳定性,Sn⁴⁺基材料是Sn²⁺基材料 的理想替代品。但是,Sn⁴⁺由于没有立体化学活性 孤对的电子以及[SnX₆]²中几乎没有结构畸变^[8], 因此其发光性能较弱,目前已知结构中 (C₆N₂H₁₆Cl)₂SnCl₆的效率最高,为8.1%^[53]。当Sn²⁺被 氧化成Sn⁴⁺时,其会失去最外层的5s²电子,化学活 性降低,相应的激发态结构畸变也会随之减少, Stokes 位移减小,相应的激发和发射之间的光谱重 叠,增加了激发能的共振传递。激子迁移的增加提 高了激子遇到缺陷的概率,从而增加了非辐射复合 率,使PLQY降低^[33]。由于没有孤对电子的存在,*d*¹⁰ 整体的PLQY相比于5s²系列低一些(表3),对于*d*¹⁰系 列的研究可以通过掺杂等方式来进一步改善其 PLQY。

图 3 (a) $(PMA)_3InBr_6^{[47]}$ 、(b) $RInBr_4^{[48]}$ 和(c) $(C_{16}H_{36}N)CuI_2^{[51]}$ 的晶体结构 Fig.3 Crystal structures of (a) $(PMA)_3InBr_6^{[47]}$, (b) $RInBr_4^{[48]}$, and (c) $(C_{16}H_{36}N)CuI_2^{[51]}$

Inorganic unit structure	Compound	Abbr.*	$\lambda_{_{ m em}}$ / nm	PLQY	Ref.
[InX ₆] ³⁻ (X=Cl, Br)	(PMA) ₃ InBr ₆	PMA	610	35%	[47]
[InX ₄] ⁻ (X=Cl, Br)	RInBr ₄	R	437	16.36%	[48]
Multimeric form of Cu+	(TBA)CuBr ₂	TBA	511	55%	[54]
	$(\mathrm{C_{16}H_{36}N})\mathrm{CuI_2}$	—	476, 675	54.3%	[51]
	$(DTA)_2Cu_2I_4$	DTA	540	60%	[55]
	$(Gua)_3Cu_2I_5$	Gua	481	96%	[56]
	$(18\text{-}\mathrm{crown}\text{-}6)_2\mathrm{Na}_2(\mathrm{H}_2\mathrm{O})_3\mathrm{Cu}_4\mathrm{I}_6$	18-crown-6	536	91%	[57]
	$Cu_2I_2(Ph_3P)_2$	Ph ₃ P	595	19%	[58]
	$\mathrm{Cu}_4\mathrm{I}_4(\mathrm{P}(\mathrm{C}_6\mathrm{H}_4\mathrm{\longrightarrow}\mathrm{OCH}_3)_3)_4$	—	558	72%	[59]
	$\mathrm{Cu}_4\mathrm{I}_4(\mathrm{P}(\mathrm{C}_6\mathrm{H}_4\mathrm{-\!-\!CH}_3)_3)_4$	—	515	50%	[59]
	$\mathrm{Cu}_4\mathrm{I}_4(\mathrm{P}(\mathrm{C}_6\mathrm{H}_5)_3)_4$	—	525	88%	[59]
	$[\mathrm{Cu}_4\mathrm{I}_4(\mathrm{PPh}_2(\mathrm{C}_6\mathrm{H}_4\mathrm{CH}_2\mathrm{OH}))_4]\boldsymbol{\cdot}\mathrm{CH}_3\mathrm{CN}$	$PPh_2(C_6H_4CH_2OH)$	542	73%	[60]
	$[\mathrm{Cu}_4\mathrm{I}_4\!(\mathrm{PPh}_2\!(\mathrm{C}_6\mathrm{H}_4\mathrm{CH}_2\mathrm{OH}))_4]\!\cdot\!3\mathrm{C}_4\mathrm{H}_8\mathrm{O}$	$\rm PPh_2(C_6H_4CH_2OH)$	540	55%	[60]
	$Cu_4I_4(PPh_2Pr)_4$	PPh_2Pr	560	60%	[61]
[ZnX ₄] ²⁻ (X=Cl, Br)	$(C_{20}H_{18}N_2)(ZnCl_4)$	—	595	31.31%	[30]
	$\mathrm{TPP}_{2}\mathrm{ZnCl}_{4}$	TPP	353	28.8%	[50]
	$(\mathrm{C_5H_7N_2)_2ZnBr_4}$		420	19.18%	[62]
	$[(N-AEPz)ZnCl_4]Cl$	N-AEPz	550	11.52%	[63]
$[HgX_4]^{2-}$ (X=Cl, Br)	$(\mathrm{C_5H_7N_2)_2HgBr_4}$	—	560	14.87%	[62]
$[CdX_4]^{2-}$ (X=Cl, Br)	$(C_{20}H_{18}N_2)(CdCl_4)$	_	583	46.89%	[30]

表3 d¹⁰系列OIMHs的无机结构单元和主要发光性质参数

Table 3 Inorganic unit structure and main luminescent property parameters of d^{10} series OIMHs

1214	无	机	化	学	学	报			第38卷
续表3									
Multimeric form of Ag ⁺	$Ag_2I_2(1,5-naphthyridine)$				_		566	15%	[58]
	$Hmta[(Hmta)Ag_4I_4]$			Hmta			620	18.5%	[52]
	[HDABCO]3Ag5Cl8			DABCO			585	6.7%	[64]
[SnX ₆] ²⁻ (X=Cl, Br)	$(\mathrm{C_6N_2H_{16}Cl})_2\mathrm{SnCl_6}$						450	8.1%	[53]

 $\label{eq:prop} $$ PMA=phenylmethylammonium; R=trimethyl(4-stilbenyl)methylammonium; TBA=tetrabutylammonium; DTA=dodecyl trimethyl ammonium; Gua=guanidine; 18-crown-6=C_{12}H_{24}O_6; Ph_3P=triphenylphosphine; PPh_2(C_6H_4CH_2OH)=4-(diphenylphosphino)phenyl)methanol; PPh_2Pr=diphenylphosphine; N-AEPz=N-aminoethylpiperazine; Hmta=hexamethylenetetramine; DABCO=1,4-diazabicyclo[2.2.2]octane.$

1.3 d⁵系列

 d^{5} 系列中,主要的研究对象是 Mn^{2+} ,其形成的配 位多面体主要是四面体 $[MnX_{4}]^{2-}$ 和八面体 $[MnX_{6}]^{4-}$, 还有少部分会形成三聚体结构 $[Mn_{3}X_{12}]^{6-}$ 。

目前合成的 OIMHs 中, Mn²⁺形成四面体结构的 居多,其在紫外灯光下呈现出绿光发射。Gong 等^[65] 报道了 2 种化合物[P14]₂[MnBr₄]和[PP14]₂[MnBr₄](图 4a、4b)。其中,前者的 PLQY 为 81%,后者的 PLQY 为 55%。[P14]₂[MnBr₄]中的[MnBr₄]²⁻是完全有序的, [PP14]₂[MnBr₄]中的[MnBr₄]²⁻是无序的,四面体结构 的有序性对于PLQY有很大的影响。六配位的Mn²⁺ 在紫外灯光下呈现出红光发射。Zou团队¹⁶⁶合成的 (CH₆N₃)₂MnCl₄表现出强烈的红光发射,其PLQY为 55.9%(图4c)。其它Mn基高效发光的化合物见表4。 Mn可以作为中心金属阳离子存在于OIMHs的晶格 中,还可作为掺杂剂的形式存在,使其在高效 OIMHs的研究中所占的比重日益增加。

图 4 (a) [P14]₂[MnBr₄]、(b) [PP14]₂[MnBr₄]⁶⁵利(c) (CH₆N₃)₂MnCl₄^[66]的晶体结构 Fig.4 Crystal structure of (a) [P14]₂[MnBr₄], (b) [PP14]₂[MnBr₄]^{65]}, and (c) (CH₆N₃)₂MnCl₄^[66]

	表4 Mn系列OIMHs的无机单元结构和主要发光性质参数
Table 4	Inorganic unit structure and main luminescent property parameters of Mn series OIMHs

Inorganic unit structure	Compound	Abbr.*	$\lambda_{_{ m em}}$ / nm	PLQY	Ref.
[MnX ₄] ²⁻ (X=Cl, Br, I)	$[P_{14}]_2[MnBr_4]$	P14	520	81%	[65]
	$[PP_{14}]_2[MnBr_4]$	PP14	527	55%	[65]
	$[Bu_4N]_2[MnBr_4]$	$\mathrm{Bu}_4\mathrm{N}$	520	47%	[67]
	$[Ph_4P]_2[MnBr_4]$	Ph_4P	520	47%	[67]
	$[\mathrm{C_9NH_{20}]_2}[\mathrm{MnBr_4}]$	—	528	81.08%	[68]
	$[\mathrm{C_7H_{10}N]_2[MnCl_4]}$	—	523	82%	[69]
	$[C16Py]_2[MnBr_4]$	C16Py	540	65%	[70]
	[C16mim] ₂ [MnBr ₄]	C16mim	530	61%	[70]
	$(C_{20}H_{20}P)_2MnBr_4$	—	523	93.83%	[71]
	$(TMPEA)_2MnBr_4$	TMPEA	520	98%	[72]
	$(BTMA)_2MnBr_4$	BTMA	519	72%	[72]
	$(Bz(Me)_3N)_2MnCl_4$	$Bz(Me)_3N$	547	78%	[73]
	$(\mathrm{Bz}(\mathrm{Me})_3\mathrm{N})_2\mathrm{MnBr}_4$	$Bz(Me)_3N$	516	63%	[73]

续表4					
	$(n{\rm -}{\rm PrBrMe_3N})_2{\rm MnCl_4}$	$n ext{-}\operatorname{PrBrMe}_3\mathrm{N}$	512	81%	[73]
	$(\mathrm{KC})_2\mathrm{MnBr}_4$	KC	520	38.5%	[74]
	$(C_4 NOH_{10})_2 MnCl_4$	—	450	39%	[75]
	$(1\text{-}C_5\text{H}_{14}\text{N}_2\text{Br})_2\text{MnBr}_4$	—	520	60.7%	[76]
	$(C_4H_9NH_3)_2MnI_4$	—	550, 672	68%	[77]
$[\mathrm{MnX}_6]^{4-}(\mathrm{X=Cl},\mathrm{Br},\mathrm{I})$	$(Pyrrolidinium)MnCl_3$	_	640	56%	[78]
	$(3-Pyrrolinium)MnCl_3$	_	635	28%	[79]
	$(\mathrm{C_4NOH_{10}})_5\mathrm{Mn_2Cl_9}{\boldsymbol{\cdot}}\mathrm{C_2H_5OH}$	—	620	29%	[75]
	$(CH_6N_3)_2MnCl_4$	_	650	55.9%	[66]

 $\label{eq:P14=N-butyl-N-methylpyrrolidinium; Bu_4N=tetrabutylammonium; C16Py=cetylpyridinium; C16mim=1-methyl-3-hexadecylimidazolium; TMPEA=trimethylphenylammonium; BTMA=benzyltrimethylammonium; Bz(Me)_3N=N-benzyl-N, N, N-trimethyl; KC=K(dibenzo-18-crown-6).$

1.4 含有多个B位阳离子的OIMHs

研究表明在单一金属阳离子OIMHs的基础上,通过 引入另外的金属阳离子,形成多中心金属阳离子 OIMHs,可以进一步扩展发射光谱的宽度实现单一组分 白光发射。Ma课题组^[80]合成的(HMTA)₄PbMn_{0.69}Sn_{0.31}Br₈ 包括了PbBr₄²⁻、MnBr₄²⁻、SnBr₄²⁻单体结构,实现了白 光发射,其PLQY达到73%(图 5a 和 5b)。多中心金 属阳离子化合物的另外一种存在方式就是多聚体 和单体结构结合,多聚体研究中以[Pb₃X₁₁]⁵⁻三聚体 研究最多,它是由3个[PbX₆]⁺八面体通过共面连接 形成的,结构中引入另外一种金属离子的单体结构 进行光谱调控,形成不同颜色的光,多个阳离子中 心同时也会使材料PLQY得到极大的提高(表 5)。例 如 Xia 课题组^[81]报道的(C₉NH₂₀)₉Pb₃X₁₁(MBr₄)₂(X=Br、 Cl; M=Mn、Fe、Co、Ni、Cu和Zn)系列化合物,其呈现 出不同颜色的发光且PLQY也不尽相同(图5c~5e)。 其它多中心金属阳离子化合物见表5,多中心金属 阳离子化合物的合成和研究正在逐渐成为调整发 光谱图和提高PLQY的有效措施。

2 OIMHs的发光机理

目前,有关OIMHs的研究在不断增加,其发光本质也逐渐被揭示。已报道的发光机理主要包括 STE、ns²孤对电子、Mn²⁺孤立中心发光以及混合机理 发光。

2.1 STE发光

STE发光是目前解释具有低晶体结构维度的 OIMHs发光的主流机理(图6)。STE的产生是由于

- 图 5 (a) (HMTA)₄PbMn_{0.69}Sn_{0.31}Br₈的单晶结构; (b)结构单元: PbBr₄²⁻(紫色四面体)、MnBr₄²⁻(绿色四面体)、SnBr₄²⁻(绿色四面体)和有机阳离子HAMT^{+[80]}; (c) 提出(C₉NH₂₀)₉Pb₃X₁₁(MX₄)₂的结构设计原理, 突出 [Pb₃X₁₁]⁵⁻三聚体的局部结构; (d) 具有不同M位阳离子的[MX₄]²⁻; (e) (C₉NH₂₀)₉Pb₃X₁₁(MX₄)₂的晶胞^[81]
- Fig.5 (a) Single-crystal structure of (HMTA)₄PbMn_{0.69}Sn_{0.31}Br₈; (b) Building blocks: PbBr₄²⁻ (purple tetrahedron), MnBr₄²⁻ (green tetrahedron), SnBr₄²⁻ (brown tetrahedron), and the organic cation HAMT^{+ [80]}; (c) Proposed structural design principle of (C₉NH₂₀)₉Pb₃X₁₁(MX₄)₂ highlighting the local structure of [Pb₃X₁₁]⁵⁻ block; (d) [MX₄]²⁻ block with different M-position cations; (e) Unit cell of (C₉NH₂₀)₉Pb₃X₁₁(MX₄)₂^[81]

表5 多甲心金属阳离于OIMHS的无机单无结构和主要发无性质:

Table 5 Inorganic unit structure and main luminescent property parameters of multi-component OIMHs

Compound	Abbr.*	$\lambda_{_{ m em}}$ / nm	PLQY	Ref.
$(C_9NH_{20})_9[Pb_3Cl_{11}](ZnCl_4)_2$	_	516	90.8%	[81]
$(C_9NH_{20})_9[Pb_3Cl_{11}](MnCl_4)_2$	—	519	83.3%	[81]
$(\mathrm{bmpy})_9 [\mathrm{SbCl}_5]_2 [\mathrm{Pb}_3 \mathrm{Cl}_{11}]$	bmpy	516, 673	>70%	[82]
$(bmpy)_{9}[ZnBr_{4}]_{2}[Pb_{3}Br_{11}]$	bmpy	564	7%	[83]
$(\mathrm{bmpy})_9[\mathrm{ZnCl}_4]_2[\mathrm{Pb}_3\mathrm{Cl}_{11}]$	bmpy	512	ca. 100%	[84]
$(C_9 NH_{20})_9 [Pb_3 Br_{11}] (Mn Br_4)_2$	—	528, 565	49.8%	[85]
$({\rm C_9NH_{20}})_7 [{\rm PbCl_4}] {\rm Pb_3Cl_{11}}$	—	470	83%	[86]
$(\mathrm{Emim})_8[\mathrm{SbCl}_6]_2[\mathrm{SbCl}_5]$	Emim	577	11.2%	[87]
$[PP14]_9 [Pb_3 Br_{11}] [PbBr_4]_2$	PP14	500	9.54%	[21]
${\rm (Bmpip)_2Pb_{0.16}Sn_{0.84}Br_4}$	Bmpip	470, 670	39%	[88]
$({\rm HMTA})_4{\rm Pb}{\rm Mn}_{0.69}{\rm Sn}_{0.31}{\rm Br}_8$	HMTA	460, 550, 650	73%	[80]
$(C_5H_{14}N_2)_2Pb_4MnCl_{14}$	—	678	32%	[89]

*bmpy=1-butyl-1-methylpyrrolidinium; Emim=1-ethyl-3-methylimidazolium; HMTA=N-benzylhexamethylenetetramine.

激子-声子的强耦合,使激发态晶格产生了瞬态的 弹性畸变,造成了自由激子(FE)的俘获,也被称为本 征 STE^[90]。STE 可以通过辐射跃迁的方式释放出能 量。当能量增加时,STE 也可以向 FE 进行转换^[91]。 STE 参与的光发射的表现是宽带发射且斯克托斯位 移较大。材料处于基态时这种产生 STE 的瞬态畸变 消失,它不同于永久缺陷。永久缺陷有时也会与 FE 相互耦合,促进 STE 的形成,也被称为非本征 STE。 缺陷可能会从稳态吸收光谱中表现出亚带隙吸收, 而 STE 没有从稳态吸收光谱中表现出亚带隙吸收, 而 STE 没有从稳态吸收中表现出吸收信号^[92]。此 外,从瞬态吸收来看,缺陷会表现出负的亚带隙漂 自信号,而 STE则表现出正的吸收信号^[93]。此外,从 激励功率相关的光致发光(PL)测量结果来看,当由

永久缺陷主导宽带发射时,预期会出现饱和PL。相反,如果宽带发射来自STE,则激励功率与PL呈线性关系,不会出现饱和的PL现象^[19,25,90,94]。

由于晶格变形和载流子-声子耦合,基于STE的稳态光谱通常表现出较大的Stokes位移和宽谱发射;在低温光谱中,可以看到化合物随着温度升高 会出现展宽的现象;在寿命光谱中,其从激发态跃 迁回基态的时间更长。在瞬态光谱中,STE的光诱 导信号(PIA)比FE的PIA达到峰值所需要的时间更 长,衰减弛豫时间也更长^[92]。

2.2 ns²孤对电子发光

目前,对于ns²系列合成的化合物,主要使用的 模型有3种:(1)如图7a所示,自由ns²离子的能级图

图 6 (a) 自捕获、(b) 永久缺陷的捕获和(c) 受永久缺陷影响的自捕获^[90]; (d) STE 和 FE 的发射机理图^[91]

Fig.6 (a) Self-trapping, (b) trapping at permanent defects, and (c) self-trapping influenced by permanent defects^[90];
 (d) Emission mechanism diagram of STE and FE ^[91]

中,其基态用¹S₀表示,当发生库仑和交换相互作用 时,*nsnp*激发态会分裂为¹P和³P,然后经过自旋轨 道耦合,³P会分裂为非简并态的³P₀、³P₁、³P₂;(2)如图 7b所示,分子轨道理论中,由于配位场的作用,中心 金属和配体之间的电子轨道会发生很大程度的杂 化,进而形成分子能级;(3)如图7c所示,在半导体 材料中,通常用STE模型来解释ns²发光,激发态结 构扭曲程度会影响到达激发态所需能量,进而影响 发射。Kovalenko课题组将3个模型进行结合,形成 了如图7d所示的统一模型^[10]。

- 图7 (a) 自由 ns²离子的能级图; (b) 金属-卤化物分子轨道图, 图中 AO 表示原子轨道; (c) 简化 STE 模型在 0D 5s²金属 卤化物中的位型坐标图;(d) 用位型坐标图表示的统一模型,其中基态和激发态使用其从活性 ns²金属离子衍生 的原子特性进行描述^[10]
- Fig.7 (a) Energy band diagram associated with the free ns^2 ion; (b) Metal-halide molecular orbital diagram where AO represents atomic orbital; (c) Configurational coordinate diagram of the simplified STE model in OD $5s^2$ metal halides; (d) Unified model with the configurational coordinate diagram, in which the ground and excited states are described using their atomic character as derived from the active ns^2 metal ion^[10]

2.3 Mn²⁺的孤立发光中心

四面体配位的[MnX_4]²⁻处于弱晶体场,发射绿 光;八面体配位的[MnX_6]⁴⁻处于强晶体场,发射红光。 其发射机理均为 ${}^{4}T_1 \rightarrow {}^{6}A_1$ 跃迁(图 8a 和 8b)^[73,95]。对于 Mn²⁺掺杂而言,则是主体化合物吸收激发光,进行能量转移,Mn²⁺作为激活剂,实现⁴ $T_1 \rightarrow ^6 A_1$ 的辐射跃迁。在此过程中,Mn作为发光中心的引入,提高了OIMHs的PLQY。

- 图 8 (a) (Bz(Me)₃N)₂MnCl₄在绿光发射下的*d-d*跃迁^[73]; (b) (CH₃NH₃)₂MnCl₄在红光发射下的*d-d*跃迁, 图中CF表示晶体场, EM表示发射^[95]
- Fig.8 (a) d-d transition of $(Bz(Me)_3N)_2MnCl_4$ under green light emission^[73]; (b) d-d transition of $(CH_3NH_3)_2MnCl_4$ under red light emission, where CF represents crystal field and EM represents emission^[95]

2.4 混合机理

对于多中心金属阳离子化合物,其发光中心也

在随之增加,相应的发射机理也会随之改变,通常 包含以上几种机理或者引入一些新的机理:(1)有机 发光中心和无机发光中心同时存在。Yue课题组^[27] 合成出的化合物[H₂BPP]Pb₂X₆存在2个发射峰,高能 峰来自[H₂BPP]²⁺的发射,低能峰来自[Pb₂X₆]²⁻。 (2) 金属-配体电荷转移或卤化物-配体电荷转移 (MLCT/HLCT)、簇中心(CC)相互作用。Xia课题组^[57] 合成出的化合物(18-crown-6)₂Na₂(H₂O)₃Cu₄I₆(CNCI)的 光谱图呈现出双发射,其中高能发射峰位于536 nm,低能发射峰位于700 nm,其高能发射峰归因于 MLCT/HLCT,低能发射峰归因于CC(图9a~9d,PLE= 光致发光激发)。

图 9 CNCI在(a) 低温(LT, 15 K)和(b) 高温(HT, 298 K)下的连续 PL/PLE 相关图; (c) LT和(d) HT的发射机理示意图^[57] Fig.9 Consecutive PL/PLE correlation charts of CNCI (a) at a low temperature (LT, 15 K) and (b) at a high temperature (HT, 298 K); Schematic diagram of the emission mechanism at (c) LT and (d) HT^[57]

3 提高OIMHs的光致PLQY的方法

目前提高OIMHs化合物PLQY的策略,主要通 过降低晶体结构维度、掺杂发光中心离子、改变配 位多面体之间的距离和卤素替代方式对结构进行 调节等。

3.1 降低晶体结构维度

降低钙钛矿材料的维度可以调节它们的光学 特性^[1]。由于角共享的BX₆八面体晶体结构,使得 3D的ABX,结构具有刚性结构约束,通过增加有机 阳离子的长度,可以增加其结构的灵活性,从而实 现结构维度的调节。长链烷基铵有机-无机杂化卤 化物钙钛矿分子式为A'2BX4,通常被称为2D钙钛 矿。这里A'是长有机烷基铵阳离子。大多数报道 的2D钙钛矿衍生物具有单铵和二铵阳离子,通式为 (NH₃RNH₃)BX₄或(RNH₃)₂BX₄, R 为有机官能团。对 于化合物而言,随着结构维度的降低,化合物的带 隙会增加。其中低维材料是天然的量子阱结构,由 于量子阱内势垒之间不同的介电环境产生了强烈 的电子-空穴相互作用,使得它们具有较大的激子 结合能(>100 meV)。这提高了PL强度,并且高量子 产率也得益于禁阻电子跃迁的减少[1]。同时随着维 度的降低,STE的束缚能力越来越强,相应会形成一 个宽谱发射^[10]。因此,结构灵活、低维金属卤化物的 强约束广泛适用于发光应用。

目前报道的 PLQY 较高的 OIMHs 主要集中在 1D 和 0D 结构中。Ma 课题组¹⁹⁶报道表明(PEA)₂SnBr₄ (2D)的 PLQY 极低(<0.1%),主要原因就是该化合物 的非局域化电子态导致较弱的激子结合、较高的激子迁移率和较高的非辐射衰变。在其合成方法中加入了二氯甲烷,形成了[(PEA)4SnBr6][(PEA)Br]2 [CCl2H2]2(0D),其PLQY高达90%,主要就是因为激子的高度局域化,导致了强烈的激子-声子耦合作用。 Mao等^[9]合成的(2,6-dmpz)3Pb2Br10(1D)是其合成的系列化合物中PLQY最高的,可以达到12%,其发射峰同时具有FE发射和STE发射,此文章中报道的其他2D和3D的化合物都只具有较窄的FE发射。因此,设计、合成具有低维度晶体结构的化合物是实现高PLQY的有效途径之一。本文作者近期研究发现,当OIMHs中有机物为软链结构(不含苯环、双键、三键等刚性结构),同时有机物与无机八面体作用的位点(如N)空间位阻大时,形成的化合物PLQY相对较高[1136818488]。

3.2 掺杂发光中心离子

使用 Sb³⁺、Mn²⁺和 Sn²⁺等激活剂进行掺杂,可以 引人发光中心(图 10)。Chen 课题组^[97]在 InCl₆ (C₄H₁₀SN)₄·Cl 中掺入 Sb³⁺,其 PLQY 从 20% 提高到 90%,Sb³⁺的引入造成激子的局域化,呈现出宽带发 射和大的 Stokes 位移。对于 Sb³⁺掺杂的化合物还有 很多^[98-100],比如(C₈NH₁₂)₆InBr₉·H₂O,该化合物 PLQY 也得到了极大的提升,通过调整浓度实现了白光发 射。对于 Mn²⁺掺杂^[31,89,101-107]的研究更为普遍,Kundu 课题组^[105]报道 Mn²⁺掺杂(C₄H₉NH₃)PbBr₄,PLQY 最高 可达 37%,强束缚激子从基质材料到 Mn²⁺发生能量 转移,从而产生⁴T₁→⁶A₁发射。Gautier课题组^[31]也做

- 图 10 (a) 在 InCl₆(C₄H₁₀SN)₄·Cl 中进行 Sb³⁺掺杂的替代过程示意图; (b) Sb³⁺掺杂和未掺杂 InCl₆(C₄H₁₀SN)₄·Cl 的稳态光谱图^[97]; (c) (TDMP)PbBr₄: Mn 的发光机理^[31]; (d) 未掺杂和掺杂 Sn 的 2D 钙钛矿晶体中的激子 捕获示意图; (e) Sn 掺杂(PEA),PbI₄辐射通道示意图^[108]
- Fig.10 (a) Schematic diagram of the substitution process for Sb³⁺ doping in $InCl_6(C_4H_{10}SN)_4 \cdot Cl$; (b) Steady-state spectra of Sb³⁺ doped and undoped $InCl_6(C_4H_{10}SN)_4 \cdot Cl^{[97]}$; (c) Mechanism of luminescence for (TDMP)PbBr₄: Mn^[31]; (d) Schematic illustration of exciton trapping in undoped and Sn-doped 2D perovskite crystals; (e) Schematic illustration of radiative channels in Sn-doped 2D perovskites^[108]

了相关的研究,在(TDMP)PbBr₄中掺入Mn²⁺,其 PLQY可以达到60%。关于Sn²⁺掺杂的研究较少, Chen课题组^[108]在(PEA)₂PbI₄中掺入Sn²⁺,实现了 PLQY从0.7%到6%的增加。对OIMHs材料进行掺 杂,实现高效、宽带发光,已经成为了当前提高该类 材料荧光性能的主要途径之一。

3.3 改变配位多面体之间的距离

通过选择有机阳离子增加 Mn-Mn 之间的距

离^[72,109-110],减少能量转移,可实现高效发光(图11a、11b)。也有研究表明,并不是距离越远越好,Mn-Mn距离增加到0.9254 nm,其PLQY达到最大,之后随距离增加其PLQY反而开始降低^[111]。

3.4 卤素替代

对于杂化金属卤化物发光材料而言,其发光主要来自无机结构[BX₆]²⁻、[BX₄]²⁻等,随着B位置上金属离子不同,PLQY会发生改变;同样其配位卤素发

- 图 11 (a) 所选的 0D Mn²⁺基金属卤化物的最近 Mn-Mn距离和 PLQY 的图示; (b) 预测 0D Mn²⁺基金属卤化物中 Mn²⁺的 发射强度与最近 Mn-Mn距离的依赖关系^[109]; (c) Cl 元素含量与 PLQY 变化之间的关系^[112]
- Fig.11 (a) Illustration of the closest Mn-Mn distance and PLQY for the selected 0D Mn²⁺-based metal halides; (b) Predicted dependences of the emission intensity of Mn²⁺ on the closest Mn-Mn distance in 0D Mn²⁺-based metal halides^[109];
 (c) Relationship between the content of Cl element and the change of PLQY^[112]

生改变,也会严重地影响发光基团,从而影响 PLQY^[10]。如图11c所示,Xia课题组^[112]报道随着 (C₉NH₂₀)₉Pb₃Zn₂Br_{19(1-x}Cl_x(x=0~1)中x的增加其发射峰 位不断蓝移,同时PLQY从8%增加到91%。其中随 着Cl含量的增加,热辅助非辐射复合作用减弱,产 生更有效的辐射跃迁通道,最终使PLQY增强。

4 稳定性

对于OIMHs 而言,其稳定性是制约发展的关 键,目前并未形成可以提高其稳定性的统一理论。 针对A位而言,引入大的含硫有机阳离子与中心金 属阳离子进行有机构筑,其中阳离子半径需要大于 Cs、MA和FA,其形成的化合物更倾向生成低维度结 构,结构维度的降低可以提高化合物的稳定性。对 于金属离子而言,目前稳定性较高的是 Sn⁴⁺,此前 Lin课题组^[53]合成出的(C₆N₂H₁₆Cl)₂SnCl₆在高达 523 K (250 ℃)的温度下表现出显著的空气和热稳定性。 He 课题组^[113]合成的(C₈H₂₂Cl)₂SnCl₆在高温(>200 ℃) 和高湿度(相对湿度大于 70%)下均表现出显著的结 构稳定性。其他金属离子也用于合成有高稳定性 的 化 合 物 ,如 (TMA)₂SbCl₅·DMF^[114]、[H₂DABCO] [Ag₂Br₄(DABCO)]^[64]、MEA(MnBr₄)₂(MEA = ((CH₃)₄N) ((C₂H₃)₄N)₂·NH₄)^[115]、(C₂₄H₂₀P)₂MnBr₄^[71]等。

5 总结与展望

本文主要总结了高效的OIMHs,按照B位金属 阳离子的不同电子特征进行分类(ns²、d10、d5),当前 研究显示仍然是ns²系列OIMHs的PLQY最高,Pb²⁺ 的毒性制约了其进一步发展,Sn²⁺基材料中高效发 光的较多,但是其室温稳定性问题阻碍了其应用的 步伐。d¹⁰系列金属阳离子最为丰富,每种金属阳离 子都有不同的特性,丰富了OIMHs的光学性能。 d^{5} 系列的 Mn²⁺可以形成分立发光中心,正在成为单中 心金属阳离子、多中心金属阳离子以及掺杂OIMHs 争相研究的重点。不同类型的发光材料,其发光机 理不尽相同,目前比较认可的机理主要包括:STE发 光、ns²孤对电子发光、Mn²⁺的孤立发光中心以及混 合发光机理。其中在低维的金属卤化物研究中,仍 以STE发光为主。d¹⁰系列化合物中的宽带发射机 理尚不清楚,当前主要使用STE模型进行解释。为 了制备出更加高效的发光材料,通常会尝试使用降 低结构维度、掺杂、调整发光中心之间的距离以及 卤素共取代等措施,产生宽带发射同时提高PLQY。 这些材料的持续开发将推动OIMHs发光材料领域 新一轮的研究热潮并最终促进其商业应用。

报

然而,合成高效的OIMHs发光材料的未来发展仍然面临许多挑战,包括但不局限于:

(1) 热稳定性。虽然目前已经合成了高效率的 发光材料,但是随着温度的升高,其PLQY就会骤降 (热猝灭)。提高其在70℃左右(商业LED表面温度) 的热猝灭性能是实现其商业化的关键一步。

(2) 有机物对 PLQY 的影响尚不清楚。即使是 相同的金属阳离子,当有机阳离子不同时,其 PLQY 也不尽相同。

(3) 实现单一组分白光发射仍然存在困难,目前 通过调整多中心金属阳离子可以实现白光发射,但 是其PLQY比较低。

(4) 对于 d¹⁰系列的金属阳离子研究还较少,其 发光机理仍不清楚,此方面还需要更多的理论 研究。

参考文献:

- [1]Quan L N, Rand B P, Friend R H, Mhaisalkar S G, Lee T W, Sargent E H. Perovskites for Next-Generation Optical Sources. *Chem. Rev.*, 2019,119(12):7444-7477
- [2]Liu X K, Xu W, Bai S, Jin Y, Wang J, Friend R H, Gao F. Metal Halide Perovskites for Light-Emitting Diodes. *Nat. Mater.*, 2021,20(1): 10-21
- [3]Yao J S, Wang J J, Yang J N, Yao H B. Modulation of Metal Halide Structural Units for Light Emission. Acc. Chem. Res., 2021,54(2):441-451
- [4]苑帅, 沈万姗, 廖良生. 基于金属卤化物钙钛矿材料的高效发光二极管. 物理, 2021,50(6):385-392

YUAN S, SHEN W S, LIAO L S. High - Efficiency Light - Emitting Diode Based on Metal Halide Perovskite Material. *Physics*, **2021**, **50** (6):385-392

- [5]Philippe B, Jacobsson T J, Correa-Baena J P, Jena N K, Banerjee A, Chakraborty S, Cappel U B, Ahuja R, Hagfeldt A, Odelius M, Rensmo H. Valence Level Character in a Mixed Perovskite Material and Determination of the Valence Band Maximum from Photoelectron Spectroscopy: Variation with Photon Energy. J. Phys. Chem. C, 2017,121(48): 26655-26666
- [6]Liu H W, Wu Z N, Gao H, Shao J R, Zou H Y, Yao D, Liu Y, Zhang H, Yang B. One-Step Preparation of Cesium Lead Halide CsPbX₃ (X= Cl, Br, and I) Perovskite Nanocrystals by Microwave Irradiation. ACS Appl. Mater. Interfaces, 2017,9(49):42919-42927
- [7]Zhang F, Zhong H Z, Chen C, Wu X G, Hu X M, Huang H L, Han J B, Zou B S, Dong Y P. Brightly Luminescent and Color-Tunable Colloidal CH₃NH₃PbX₃ (X=Br, I, Cl) Quantum Dots: Potential Alterna-

tives for Display Technology. ACS Nano, 2015,9(4):4533-4542

- [8]Li M Z, Xia Z G. Recent Progress of Zero-Dimensional Luminescent Metal Halides. Chem. Soc. Rev., 2021,50(4):2626-2662
- [9]Mao L L, Guo P J, Kepenekian M, Hadar I, Katan C, Even J, Schaller R D, Stoumpos C C, Kanatzidis M G. Structural Diversity in White-Light-Emitting Hybrid Lead Bromide Perovskites. J. Am. Chem. Soc., 2018,140(40):13078-13088
- [10]McCall K M, Morad V, Benin B M, Kovalenko M V. Efficient Lone-Pair - Driven Luminescence: Structure - Property Relationships in Emissive 5s² Metal Halides. ACS Mater. Lett., 2020,2(9):1218-1232
- [11]Yuan Z, Zhou C K, Tian Y, Shu Y, Messier J, Wang J C, van de Burgt L J, Kountouriotis K, Xin Y, Holt E, Schanze K, Clark R, Siegrist T, Ma B W. One-Dimensional Organic Lead Halide Perovskites with Efficient Bluish White-Light Emission. *Nat. Commun.*, 2017,8:14051
- [12]Qi Z K, Chen Y L, Guo Y, Yang X L, Gao H Z, Zhou G J, Li S L, Zhang X M. Highly Efficient Self-Trapped Exciton Emission in a One-Dimensional Face-Shared Hybrid Lead Bromide. *Chem. Commun.*, 2021,57(20):2495-2498
- [13]Deng C K, Hao S Q, Liu K J, Molokeev M S, Wolverton C, Fan L B, Zhou G J, Chen D, Zhao J, Liu Q L. Broadband Light Emitting Zero-Dimensional Antimony and Bismuth - Based Hybrid Halides with Diverse Structures. J. Mater. Chem. C, 2021,9(44):15942-15948
- [14]Chen D, Hao S Q, Fan L B, Guo Y W, Yao J Y, Wolverton C, Kanatzidis M G, Zhao J, Liu Q L. Broad Photoluminescence and Second-Harmonic Generation in the Noncentrosymmetric Organic-Inorganic Hybrid Halide (C₆H₅(CH₂)₄NH₃)₄MX₇·H₂O (M=Bi, In, X=Br or I). *Chem. Mater.*, **2021**,33:8106-8111
- [15]Chen D, Dai F L, Hao S Q, Zhou G J, Liu Q L, Wolverton C, Zhao J, Xia Z G. Crystal Structure and Luminescence Properties of Lead-Free Metal Halides (C₆H₅CH₂NH₃)₃MBr₆ (M=Bi and Sb). J. Mater. Chem. C, 2020,8(22):7322-7329
- [16]Liu K J, Deng C K, Li C X, Zhang X S, Cao J D, Yao J Y, Zhao J, Jiang X X, Lin Z S, Liu Q L. Hybrid Metal-Halide Infrared Nonlinear Optical Crystals of (TMEDA)MI₅ (M=Sb, Bi) with High Stability. Adv. Opt. Mater., 2021,9(24):2101333
- [17]Hao P F, Wang W P, Shen J J, Fu Y L. Non-Transient Thermo-/ Photochromism of Iodobismuthate Hybrids Directed by Solvated Metal Cations. *Dalton Trans.*, 2020,49(6):1847-1853
- [18]Dehnhardt N, Paneth H, Hecht N, Heine J. Multinary Halogenido Bismuthates beyond the Double Perovskite Motif. *Inorg. Chem.*, 2020,59(6):3394-3405
- [19]Dohner E R, Jaffe A, Bradshaw L R, Karunadasa H I. Intrinsic White-Light Emission from Layered Hybrid Perovskites. J. Am. Chem. Soc., 2014,136(38):13154-13157
- [20]Morad V, Shynkarenko Y, Yakunin S, Brumberg A, Schaller R D, Kovalenko M V. Disphenoidal Zero-Dimensional Lead, Tin, and Germanium Halides: Highly Emissive Singlet and Triplet Self-Trapped Excitons and X-ray Scintillation. J. Am. Chem. Soc., 2019,141(25): 9764-9768
- [21]Gong L K, Huang F Q, Zhang Z Z, Zhong Y, Jin J C, Du K Z, Huang

X Y. Multimode Dynamic Luminescent Switching of Lead Halide Hybrids for Anti - counterfeiting and Encryption. *Chem. Eng. J.*, **2021,424**:130544

- [22]Lin H R, Zhou C K, Chaaban M, Xu L J, Zhou Y, Neu J, Worku M, Berkwits E, He Q Q, Lee S J, Lin X S, Siegrist T, Du M H, Ma B W. Bulk Assembly of Zero-Dimensional Organic Lead Bromide Hybrid with Efficient Blue Emission. ACS Mater. Lett., 2019,1(6):594-598
- [23]Dhanabalan B, Castelli A, Palei M, Spirito D, Manna L, Krahne R, Arciniegas M. Simple Fabrication of Layered Halide Perovskite Platelets and Enhanced Photoluminescence from Mechanically Exfoliated Flakes. *Nanoscale*, **2019**,**11**(17):8334-8342
- [24]Dou L T, Wong A B, Yu Y, Lai M L, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Atomically Thin Two-Dimensional Organic - Inorganic Hybrid Perovskites. *Science*, **2015**,**349**(6255):1518-1521
- [25]Cui B B, Han Y, Huang B L, Zhao Y Z, Wu X X, Liu L, Cao G Y, Du Q, Liu N, Zou W, Sun M Z, Wang L, Liu X F, Wang J P, Zhou H P, Chen Q. Locally Collective Hydrogen Bonding Isolates Lead Octahedra for White Emission Improvement. *Nat. Commun.*, **2019**, **10**(1): 5190
- [26]Lin H R, Zhou C K, Neu J, Zhou Y, Han D, Chen S Y, Worku M, Chaaban M, Lee S J, Berkwits E, Siegrist T, Du M H, Ma B W. Bulk Assembly of Corrugated 1D Metal Halides with Broadband Yellow Emission. Adv. Opt. Mater., 2019,7(6):1801474
- [27]Sun X Y, Yue M, Jiang Y X, Zhao C H, Liao Y Y, Lei X W, Yue C Y. Combining Dual-Light Emissions to Achieve Efficient Broadband Yellowish-Green Luminescence in One-Dimensional Hybrid Lead Halides. *Inorg. Chem.*, 2021,60(3):1491-1498
- [28]Zhang W F, Pan W J, Xu T, Song R Y, Zhao Y Y, Yue C Y, Lei X W. One-Dimensional Face-Shared Perovskites with Broad-Band Bluish White-Light Emissions. *Inorg. Chem.*, **2020**,**59**(19):14085-14092
- [29]Yang W T, Xiao X L, Li M K, Hu J R, Xiao X F, Tong G L, Chen J N, He Y B. Conjugated Ditertiary Ammonium Templated (100) -Oriented 2D Perovskite with Efficient Broad-Band Emission. *Chem. Mater.*, 2021,33(12):4456-4464
- [30]Wu S Q, Zhou B, Yan D P. Low-Dimensional Organic Metal Halide Hybrids with Excitation-Dependent Optical Waveguides from Visible to Near-Infrared Emission. ACS Appl. Mater. Interfaces, 2021,13 (22):26451-26460
- [31]Yuan H L, Massuyeau F, Gautier N, Kama A B, Faulques E, Chen F, Shen Q, Zhang L M, Paris M, Gautier R. Doped Lead Halide White Phosphors for Very High Efficiency and Ultra-High Color Rendering. Angew. Chem. Int. Ed., 2020,59(7):2802-2807
- [32]Zhou J, Li M Z, Ning L X, Zhang R L, Molokeev M S, Zhao J, Yang S Q, Han K L, Xia Z G. Broad-Band Emission in a Zero-Dimensional Hybrid Organic [PbBr₆] Trimer with Intrinsic Vacancies. J. Phys. Chem. Lett., 2019,10(6):1337-1341
- [33]Shi H L, Han D, Chen S Y, Du M H. Impact of Metal ns² Lone Pair on Luminescence Quantum Efficiency in Low-Dimensional Halide Perovskites. Phys. Rev. Mater., 2019,3(3):034604
- [34]Fu Y P, Jin S, Zhu X Y. Stereochemical Expression of ns² Electron

Pairs in Metal Halide Perovskites. *Nat. Rev. Chem.*, **2021,5**(12):838-852

- [35]Liu X Y, Li Y Y, Liang T Y, Fan J Y. Role of Polyhedron Unit in Distinct Photophysics of Zero - Dimensional Organic - Inorganic Hybrid Tin Halide Compounds. J. Phys. Chem. Lett., 2021,12(24):5765-5773
- [36]Zhou C K, Lin H R, Tian Y, Yuan Z, Clark R, Chen B H, Van De Burgt L J, Wang J C, Zhou Y, Hanson K, Meisner Q J, Neu J, Besara T, Siegrist T, Lambers E, Djurovich P, Ma B W. Luminescent Zero-Dimensional Organic Metal Halide Hybrids with Near-Unity Quantum Efficiency. *Chem. Sci.*, **2018**,9(3):586-593
- [37]Biswas A, Bakthavatsalam R, Bahadur V, Biswas C, Mali B P, Raavi S S K, Gonnade R G, Kundu J. Lead - Free Zero Dimensional Tellurium(iv) Chloride - Organic Hybrid with Strong Room Temperature Emission as a Luminescent Material. J. Mater. Chem. C, 2021,9 (12):4351-4358
- [38]Wang A F, Guo Y Y, Zhou Z B, Niu X H, Wang Y G, Muhammad F, Li H B, Zhang T, Wang J L, Nie S M, Deng Z T. Aqueous Acid-Based Synthesis of Lead - Free Tin Halide Perovskites with Near-Unity Photoluminescence Quantum Efficiency. *Chem. Sci.*, 2019,10 (17):4573-4579
- [39]Fu P F, Huang M L, Shang Y Q, Yu N, Zhou H L, Zhang Y B, Chen S Y, Gong J K, Ning Z J. Organic-Inorganic Layered and Hollow Tin Bromide Perovskite with Tunable Broadband Emission. ACS Appl. Mater. Interfaces, 2018,10(40):34363-34369
- [40]Wang S X, Popović J, Burazer S, Portniagin A, Liu F Z, Low K H, Duan Z H, Li Y X, Xiong Y, Zhu Y M, Kershaw S V, Djurišić A B, Rogach A L. Strongly Luminescent Dion - Jacobson Tin Bromide Perovskite Microcrystals Induced by Molecular Proton Donors Chloroform and Dichloromethane. *Adv. Funct. Mater.*, **2021**, **31**(28): 2102182
- [41]Su B B, Song G M, Molokeev M S, Lin Z S, Xia Z G. Synthesis, Crystal Structure and Green Luminescence in Zero - Dimensional Tin Halide (C₈H₁₄N₂)₂SnBr₆. *Inorg. Chem.*, **2020**,**59**(14):9962-9968
- [42]Wolf S, Liebertseder M, Feldmann C. Synthesis, Structure, and Photoluminesence of the Chloridoaluminates [BMIm] [Sn(AlCl₄)₃], [BMPyr][Sn(AlCl₄)₃], and [BMIm][Pb(AlCl₄)₃]. *Dalton Trans.*, 2021, 50(24):8549-8557
- [43]Zhou C K, Worku M, Neu J, Lin H R, Tian Y, Lee S J, Zhou Y, Han D, Chen S Y, Hao A, Djurovich P I, Siegrist T, Du M H, Ma B W. Facile Preparation of Light Emitting Organic Metal Halide Crystals with Near-Unity Quantum Efficiency. *Chem. Mater.*, **2018**,**30**(7):2374-2378
- [44]Li Z Y, Li Y, Liang P, Zhou T L, Wang L, Xie R J. Dual-Band Luminescent Lead-Free Antimony Chloride Halides with Near-Unity Photoluminescence Quantum Efficiency. *Chem. Mater.*, **2019**, **31**(22): 9363-9371
- [45]Morad V, Yakunin S, Benin B M, Shynkarenko Y, Grotevent M J, Shorubalko I, Boehme S C, Kovalenko M V. Hybrid OD Antimony Halides as Air-Stable Luminophores for High-Spatial-Resolution Remote Thermography. Adv. Mater., 2021,33(9):e2007355
- [46]He Q Q, Zhou C K, Xu L J, Lee S J, Lin X S, Neu J, Worku M,

Chaaban M, Ma B W. Highly Stable Organic Antimony Halide Crystals for X-ray Scintillation. *ACS Mater. Lett.*, **2020**,**2**(6):633-638

- [47]Chen D, Hao S Q, Zhou G J, Deng C K, Liu Q L, Ma S L, Wolverton C, Zhao J, Xia Z G. Lead-Free Broadband Orange-Emitting Zero-Dimensional Hybrid (PMA)₃InBr₆ with Direct Band Gap. *Inorg. Chem.*, **2019,58**(22):15602-15609
- [48]Fattal H, Creason T D, Delzer C J, Yangui A, Hayward J P, Ross B J, Du M H, Glatzhofer D T, Saparov B. Zero-Dimensional Hybrid Organic-Inorganic Indium Bromide with Blue Emission. *Inorg. Chem.*, 2021,60(2):1045-1054
- [49]王申宇,陈典,刘晓莉,王硕文,苑亚南,王振平,杨春.基于(E)-N, N-二甲基-4-(2-(吡啶-4-基)乙烯基)苯胺的锌/镉有机-无机杂化金 属卤化物的结构和发光性质.无机化学学报,2021,37(9):1659-1664
 - WANG S Y, CHEN D, LIU X L, WANG S W, YUAN Y N, WANG Z
 P, YANG C. Structures and Photoluminescence Properties of Zinc(II)/
 Cadmium (II) Based Organic Inorganic Hybrid Metal Halides
 Derived from (E)-N,N-Dimethyl-4-(2-(pyridin-4-yl)vinyl) aniline.
 Chinese J. Inorg. Chem., 2021,37(9):1659-1664
- [50]Xu L J, Plaviak A, Lin X S, Worku M, He Q Q, Chaaban M, Kim B J, Ma B W. Metal Halide Regulated Photophysical Tuning of Zero -Dimensional Organic Metal Halide Hybrids: From Efficient Phosphorescence to Ultralong Afterglow. Angew. Chem. Int. Ed., 2020,59(51): 23067-23071
- [51]Lian L Y, Zhang P, Liang G J, Wang S, Wang X, Wang Y, Zhang X W, Gao J B, Zhang D L, Gao L, Song H S, Chen R, Lan X Z, Liang W X, Niu G D, Tang J, Zhang J B. Efficient Dual-Band White-Light Emission with High Color Rendering from Zero-Dimensional Organic Copper Iodide. ACS Appl. Mater. Interfaces, 2021, 13(19): 22749 22756
- [52]Zhang R C, Wang J J, Zhang J C, Wang M Q, Sun M, Ding F, Zhang D J, An Y L. Coordination-Induced Syntheses of Two Hybrid Framework Iodides: A Thermochromic Luminescent Thermometer. *Inorg. Chem.*, 2016,55(15):7556-7563
- [53]Song G M, Li M Z, Yang Y, Liang F, Huang Q, Liu X M, Gong P F, Xia Z G, Lin Z S. Lead-Free Tin(N)-Based Organic-Inorganic Metal Halide Hybrids with Excellent Stability and Blue-Broadband Emission. J. Phys. Chem. Lett., 2020,11(5):1808-1813
- [54]Peng H, Tian Y, Zhang Z H, Wang X X, Huang T, Dong T T, Xiao Y H, Wang J P, Zou B S. Bulk Assembly of Zero-Dimensional Organic Copper Bromide Hybrid with Bright Self-Trapped Exciton Emission and High Antiwater Stability. J. Phys. Chem. C, 2021,125(36):20014-20021
- [55]Liu F, Mondal D, Zhang K, Zhang Y, Huang K K, Wang D Y, Yang W S, Mahadevan P, Xie R G. Zero-Dimensional Plate-Shaped Copper Halide Crystals with Green-Yellow Emissions. *Mater. Adv.*, 2021, 2(11):3744-3751
- [56]Peng H, Wang X X, Tian Y, Zou B S, Yang F, Huang T, Peng C Y, Yao S F, Yu Z M, Yao Q R, Rao G H, Wang J Q. Highly Efficient Cool-White Photoluminescence of (Gua)₃Cu₂I₅ Single Crystals: Formation and Optical Properties. ACS Appl. Mater. Interfaces, 2021,13

(11):13443-13451

- [57]Huang J L, Su B B, Song E H, Molokeev M S, Xia Z G. Ultra-Broad-Band-Excitable Cu(I)-Based Organometallic Halide with Near-Unity Emission for Light - Emitting Diode Applications. *Chem. Mater.*, 2021,33(12):4382-4389
- [58]Wang S X, Morgan E E, Vishnoi P, Mao L L, Teicher S M L, Wu G, Liu Q L, Cheetham A K, Seshadri R. Tunable Luminescence in Hybrid Cu(I) and Ag(I) Iodides. *Inorg. Chem.*, 2020,59(20):15487-15494
- [59]Huitorel B, El Moll H, Utrera Melero R, Cordier M, Fargues A, Garcia A, Massuyeau F, Martineau-Corcos C, Fayon F, Rakhmatullin A, Kahlal S, Saillard J Y, Gacoin T, Perruchas S. Evaluation of Ligands Effect on the Photophysical Properties of Copper Iodide Clusters. *Inorg. Chem.*, 2018,57(8):4328-4339
- [60]Utrera-Melero R, Huitorel B, Cordier M, Mevellec J Y, Massuyeau F, Latouche C, Martineau-Corcos C, Perruchas S. Combining Theory and Experiment to Get Insight into the Amorphous Phase of Luminescent Mechanochromic Copper Iodide Clusters. *Inorg. Chem.*, 2020,59(18):13607-13620
- [61]Perruchas S, Tard C, Le Goff X F, Fargues A, Garcia A, Kahlal S, Saillard J Y, Gacoin T, Boilot J P. Thermochromic Luminescence of Copper Iodide Clusters: The Case of Phosphine Ligands. *Inorg. Chem.*, 2011,50(21):10682-10692
- [62]Yangui A, Roccanova R, McWhorter T M, Wu Y T, Du M H, Saparov B. Hybrid Organic - Inorganic Halides (C₅H₇N₂)₂MBr₄ (M=Hg, Zn) with High Color Rendering Index and High-Efficiency White-Light Emission. *Chem. Mater.*, **2019**,**31**(8):2983-2991
- [63]Zhang X Y, Li L, Wang S S, Liu X T, Yao Y P, Peng Y, Hong M C, Luo J H. [(N-AEPz)ZnCl₄]Cl: A "Green" Metal Halide Showing Highly Efficient Bluish - White - Light Emission. *Inorg. Chem.*, 2020, 59(6): 3527-3531
- [64]Sun C, Guo Y H, Yuan Y, Chu W X, He W L, Che H X, Jing Z H, Yue C Y, Lei X W. Broadband White-Light Emission in One-Dimensional Organic -Inorganic Hybrid Silver Halide. *Inorg. Chem.*, 2020,59(7): 4311-4319
- [65]Gong L K, Hu Q Q, Huang F Q, Zhang Z Z, Shen N N, Hu B, Song Y, Wang Z P, Du K Z, Huang X Y. Efficient Modulation of Photoluminescence by Hydrogen Bonding Interactions between Inorganic [MnBr₄]²⁻ Anions and Organic Cations. Chem. Commun., 2019, 55 (51):7303-7306
- [66]Wang S Y, Han X X, Kou T T, Zhou Y Y, Liang Y, Wu Z X, Huang J L, Chang T, Peng C Y, Wei Q L, Zou B S. Lead-Free Mn^{II} - Based Red - Emitting Hybrid Halide (CH₆N₃)₂MnCl₄ toward High Performance Warm WLEDs. J. Mater. Chem. C, 2021,9(14):4895-4902
- [67]Jana A, Zhumagali S, Ba Q K, Nissimagoudar A S, Kim K S. Direct Emission from Quartet Excited States Triggered by Upconversion Phenomena in Solid - Phase Synthesized Fluorescent Lead - Free Organic - Inorganic Hybrid Compounds. J. Mater. Chem. A, 2019, 7 (46):26504-26512
- [68]Li M Z, Zhou J, Molokeev M S, Jiang X X, Lin Z S, Zhao J, Xia Z G. Lead - Free Hybrid Metal Halides with a Green - Emissive [MnBr₄]

Unit as a Selective Turn-On Fluorescent Sensor for Acetone. *Inorg. Chem.*, **2019,58**(19):13464-13470

- [69]Li L Y, Li L, Li Q Q, Shen Y M, Pan S K, Pan J G. Synthesis, Crystal Structure and Optical Property of Manganese (II) Halides Based on Pyridine Ionic Liquids with High Quantum Yield. Transition. *Met. Chem.*, 2020,45(6):413-421
- [70]Zhang S, Zhao Y F, Zhou Y Y, Li M, Wang W, Ming H, Jing X P, Ye S. Dipole Orientation Dependent Forster Resonance Energy Transfer from Aromatic Head Groups to MnBr₄²⁻ Blocks in Organic-Inorganic Hybrids. J. Phys. Chem. Lett., 2021,12(36):8692-8698
- [71]Zhou G J, Liu Z Y, Molokeev M S, Xiao Z W, Xia Z G, Zhang X M. Manipulation of Cl/Br Transmutation in Zero - Dimensional Mn²⁺ -Based Metal Halides toward Tunable Photoluminescence and Thermal Quenching Behaviors. J. Mater. Chem. C, 2021,9(6):2047-2053
- [72]Mao L L, Guo P J, Wang S X, Cheetham A K, Seshadri R. Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides. J. Am. Chem. Soc., 2020, 142(31): 13582-13589
- [73]Morad V, Cherninkh I, Pottschacher L, Shynkarenko Y, Yakunin S, Kovalenko M V. Manganese(II) in Tetrahedral Halide Environment: Factors Governing Bright Green Luminescence. *Chem. Mater.*, 2019, 31(24):10161-10169
- [74]Zhao J, Zhang T J, Dong X Y, Sun M E, Zhang C, Li X L, Zhao Y S, Zang S Q. Circularly Polarized Luminescence from Achiral Single Crystals of Hybrid Manganese Halides. J. Am. Chem. Soc., 2019,141 (40):15755-15760
- [75]Sun M E, Li Y, Dong X Y, Zang S Q. Thermoinduced Structural-Transformation and Thermochromic Luminescence in Organic Manganese Chloride Crystals. *Chem. Sci.*, **2019**,**10**(13):3836-3839
- [76]Jiang X M, Chen Z L, Tao X T. (1-C₅H₁₄N₂Br)₂MnBr₄: A Lead-Free Zero-Dimensional Organic-Metal Halide with Intense Green Photoluminescence. Front. Chem., 2020,8:352
- [77]Jiang X M, Xia S Q, Zhang J, Ju D X, Liu Y, Hu X B, Wang L, Chen Z L, Tao X T. Exploring Organic Metal Halides with Reversible Temperature-Responsive Dual-Emissive Photoluminescence. *ChemSusChem*, 2019,12(24):5228-5232
- [78]Zhang Y, Liao W Q, Fu D W, Ye H Y, Chen Z N, Xiong R G. Highly Efficient Red-Light Emission in an Organic-Inorganic Hybrid Ferroelectric: (Pyrrolidinium)MnCl₃. J. Am. Chem. Soc., 2015, 137(15): 4928-4931
- [79]Ye H Y, Zhou Q, Niu X, Liao W Q, Fu D W, Zhang Y, You Y M, Wang J, Chen Z N, Xiong R G. High-Temperature Ferroelectricity and Photoluminescence in a Hybrid Organic-Inorganic Compound: (3 - Pyrrolinium)MnCl₃. J. Am. Chem. Soc., 2015, 137(40): 13148 -13154
- [80]Xu L J, Lee S J, Lin X S, Ledbetter L, Worku M, Lin H R, Zhou C K, Liu H, Plaviak A, Ma B W. Multicomponent Organic Metal Halide Hybrid with White Emissions. *Angew. Chem. Int. Ed.*, **2020**,**59**(33): 14120-14123
- [81]Li M Z, Molokeev M S, Zhao J, Xia Z G. Optical Functional Units in Zero-Dimensional Metal Halides as a Paradigm of Tunable Photolu-

minescence and Multicomponent Chromophores. Adv. Opt. Mater., 2020,8(8):1902114

- [82]Zhou C K, Lee S J, Lin H R, Neu J, Chaaban M, Xu L J, Arcidiacono A, He Q Q, Worku M, Ledbetter L, Lin X S, Schlueter J A, Siegrist T, Ma B W. Bulk Assembly of Multicomponent Zero - Dimensional Metal Halides with Dual Emission. ACS Mater. Lett., 2020,2(4):376-380
- [83]Lee S J, Zhou C K, Neu J, Beery D, Arcidiacono A, Chaaban M, Lin H R, Gaiser A, Chen B H, Albrecht-Schmitt T E, Siegrist T, Ma B W. Bulk Assemblies of Lead Bromide Trimer Clusters with Geometry-Dependent Photophysical Properties. *Chem. Mater.*, **2020**,**32**(1):374-380
- [84]Zhou C K, Lin H R, Neu J, Zhou Y, Chaaban M, Lee S J, Worku M, Chen B H, Clark R, Cheng W H, Guan J J, Djurovich P, Zhang D Z, Lü X J, Bullock J, Pak C, Shatruk M, Du M H, Siegrist T, Ma B W. Green Emitting Single - Crystalline Bulk Assembly of Metal Halide Clusters with Near - Unity Photoluminescence Quantum Efficiency. ACS Energy Lett., 2019,4(7):1579-1583
- [85]Li M Z, Zhou J, Zhou G J, Molokeev M S, Zhao J, Morad V, Kovalenko M V, Xia Z G. Hybrid Metal Halides with Multiple Photoluminescence Centers. Angew. Chem. Int. Ed., 2019,58(51):18670-18675
- [86]Zhou C K, Lin H R, Worku M, Neu J, Zhou Y, Tian Y, Lee S J, Djurovich P, Siegrist T, Ma B W. Blue Emitting Single Crystalline Assembly of Metal Halide Clusters. J. Am. Chem. Soc., 2018,140(41): 13181-13184
- [87]Zhang Z Z, Jin J C, Gong L K, Lin Y P, Du K Z, Huang X Y. Columinescence in a Zero-Dimensional Organic-Inorganic Hybrid Antimony Halide with Multiple Coordination Units. *Dalton Trans.*, 2021, 50(10):3586-3592
- [88]Fan L B, Liu K J, Zeng Q D, Li M Y, Cai H, Zhou J, He S H, Zhao J, Liu Q L. Efficiency-Tunable Single-Component White-Light Emission Realized in Hybrid Halides through Metal Co-Occupation. ACS Appl. Mater. Interfaces, 2021,13(25):29835-29842
- [89]Peng Y, Li L N, Ji C M, Wu Z Y, Wang S S, Liu X T, Yao Y P, Luo J H. Tailored Synthesis of an Unprecedented Pb-Mn Heterometallic Halide Hybrid with Enhanced Emission. J. Am. Chem. Soc., 2019, 141(31):12197-12201
- [90]Smith M D, Karunadasa H I. White-Light Emission from Layered Halide Perovskites. Acc. Chem. Res., 2018,51(3):619-627
- [91]Zhao J Q, Sun C, Yue M, Meng Y, Zhao X M, Zeng L R, Chen G, Yue C Y, Lei X W. Lead Chlorine Cluster Assembled One-Dimensional Halide with Highly Efficient Broadband White Light Emission. *Chem. Commun.*, 2021,57(10):1218-1221
- [92]Yang B, Chen J S, Hong F, Mao X, Zheng K B, Yang S Q, Li Y J, Pullerits T, Deng W Q, Han K L. Lead-Free, Air-Stable All-Inorganic Cesium Bismuth Halide Perovskite Nanocrystals. *Angew. Chem. Int. Ed.*, **2017,56**(41):12471-12475
- [93]Yang B, Hong F, Chen J S, Tang Y X, Yang L, Sang Y B, Xia X S, Guo J W, He H X, Yang S Q, Deng W Q, Han K L. Colloidal Synthesis and Charge-Carrier Dynamics of Cs₂AgSb_{1-y}Bi_yX₆ (X: Br, Cl; 0 ≤ y ≤ 1) Double Perovskite Nanocrystals. Angew. Chem. Int. Ed., 2019,

58(8):2278-2283

报

- [94]Yang B, Han K L. Ultrafast Dynamics of Self-Trapped Excitons in Lead-Free Perovskite Nanocrystals. J. Phys. Chem. Lett., 2021,12 (34):8256-8262
- [95]Cheng X H, Jing L, Yuan Y, Du S J, Yao Q, Zhang J, Ding J X, Zhou T L. Centimeter-Size Square 2D Layered Pb-Free Hybrid Perovskite Single Crystal (CH₃NH₃)₂MnCl₄ for Red Photoluminescence. *CrystEngComm*, 2019.21(27):4085-4091
- [96]Xu L J, Lin H R, Lee S J, Zhou C K, Worku M, Chaaban M, He Q Q, Plaviak A, Lin X S, Chen B H, Du M H, Ma B W. 0D and 2D: The Cases of Phenylethylammonium Tin Bromide Hybrids. *Chem. Mater.*, 2020,32(11):4692-4698
- [97]Wu Y, Shi C M, Xu L J, Yang M, Chen Z N. Reversible Luminescent Vapochromism of a Zero-Dimensional Sb³⁺-Doped Organic-Inorganic Hybrid. J. Phys. Chem. Lett., 2021,12(13):3288-3294
- [98]Zhang Y, Yang C, Feng J, Wang N, Li Q, Guo F W, Wang J, Xu D S. High-Efficiency Histamine-In-Based Halide Phosphors with Excellent Thermal Stability. Sci. Sin. Chim., 2021,51(7):967-974
- [99]Zhou J, Li M Z, Molokeev M S, Sun J Y, Xu D H, Xia Z G. Tunable Photoluminescence in Sb³⁺-Doped Zero-Dimensional Hybrid Metal Halides with Intrinsic and Extrinsic Self-Trapped Excitons. J. Mater. Chem. C, 2020,8(15):5058-5063
- [100]Li Z Y, Song G M, Li Y, Wang L, Zhou T L, Lin Z S, Xie R J. Realizing Tunable White Light Emission in Lead-Free Indium(III) Bromine Hybrid Single Crystals through Antimony(III) Cation Doping. J. Phys. Chem. Lett., 2020,11(23):10164-10172
- [101]Artem'ev A V, Davydova M P, Berezin A S, Brel V K, Morgalyuk V P, Bagryanskaya I Y, Samsonenko D G. Luminescence of the Mn²⁺ Ion in Non-O_h and T_d Coordination Environments: the Missing Case of Square Pyramid. *Dalton Trans.*, **2019**,**48**(43):16448-16456
- [102]Ba Q K, Jana A, Wang L H, Kim K S. Dual Emission of Water-Stable 2D Organic-Inorganic Halide Perovskites with Mn(II) Dopant. Adv. Funct. Mater., 2019,29(43):1904768
- [103]Cortecchia D, Mroz W, Neutzner S, Borzda T, Folpini G, Brescia R, Petrozza A. Defect Engineering in 2D Perovskite by Mn(II) Doping for Light-Emitting Applications. *Chem*, **2019**,**5**(8):2146-2158
- [104]Mei Y X, Yu H, Wei Z H, Mei G Q, Cai H. Two Coordinated Geometries of Mn²⁺ Ions in One Single Molecule: Organic - Inorganic Hybrids Constructed with Tris(2-aminoethyl)amine and Manganese Halide and Fluorescent Properties. *Polyhedron*, 2017,127:458-463
- [105]Biswas A, Bakthavatsalam R, Kundu J. Efficient Exciton to Dopant Energy Transfer in Mn²⁺-Doped (C₄H₉NH₃)₂PbBr₄ Two-Dimensional (2D) Layered Perovskites. *Chem. Mater.*, **2017**,**29**(18):7816-7825
- [106]Sarang S, Delmas W, Naghadeh S B, Cherrette V, Zhang J Z, Ghosh S. Low-Temperature Energy Transfer via Self-Trapped Excitons in Mn²⁺-Doped 2D Organometal Halide Perovskites. J. Phys. Chem. Lett., 2020,11(24):10368-10374
- [107]Su B B, Molokeev M S, Xia Z G. Unveiling Mn²⁺ Dopant States in Two-Dimensional Halide Perovskite toward Highly Efficient Photoluminescence. J. Phys. Chem. Lett., 2020,11(7):2510-2517
- [108]Yu J C, Kong J T, Hao W, Guo X T, He H J, Leow W R, Liu Z Y,

Cai P Q, Qian G D, Li S Z, Chen X Y, Chen X D. Broadband Extrinsic Self-Trapped Exciton Emission in Sn-Doped 2D Lead-Halide Perovskites. *Adv. Mater.*, **2019,31**(7):e1806385

- [109]Zhou G J, Liu Z Y, Huang J L, Molokeev M S, Xiao Z W, Ma C G, Xia Z G. Unraveling the Near-Unity Narrow-Band Green Emission in Zero-Dimensional Mn²⁺-Based Metal Halides: A Case Study of (C₁₀H₁₆N)₂Zn_{1-x}Mn_xBr₄ Solid Solutions. J. Phys. Chem. Lett., 2020, 11(15):5956-5962
- [110]Pan H M, Yang Q L, Xing X X, Li J P, Meng F L, Zhang X, Xiao P C, Yue C Y, Lei X W. Enhancement of the Photoluminescence Efficiency of Hybrid Manganese Halides through Rational Structural Design. *Chem. Commun.*, 2021,57(56):6907-6910
- [111]Ma Y Y, Song Y R, Xu W J, Zhong Q Q, Fu H Q, Liu X L, Yue C Y, Lei X W. Solvent-Free Mechanochemical Syntheses of Microscale Lead - Free Hybrid Manganese Halides as Efficient Green Light Phosphors. J. Mater. Chem. C, 2021,9(31):9952-9961

- [112]Li M Z, Li Y W, Molokeev M S, Zhao J, Na G R, Zhang L J, Xia Z G. Halogen Substitution in Zero-Dimensional Mixed Metal Halides toward Photoluminescence Modulation and Enhanced Quantum Yield. Adv. Opt. Mater., 2020,8(16):2000418
- [113]Zhou L, Zhang L, Li H, Shen W, Li M, He R X. Defect Passivation in Air - Stable Tin (N) - Halide Single Crystal for Emissive Self -Trapped Excitons. Adv. Funct. Mater., 2021,31(51):2108561
- [114]Wei Q, Chang T, Zeng R S, Cao S, Zhao J L, Han X X, Wang L H, Zou B S. Self-Trapped Exciton Emission in a Zero-Dimensional (TMA)₂SbCl₅·DMF Single Crystal and Molecular Dynamics Simulation of Structural Stability. J. Phys. Chem. Lett., 2021,12(30):7091-7099
- [115]Wu Y Y, Fan W B, Gao Z R, Tang Z, Lei L, Sun X F, Li Y L, Cai H L, Wu X S. New Photoluminescence Hybrid Perovskites with Ultrahigh Photoluminescence Quantum Yield and Ultrahigh Thermostability Temperature up to 600 K. *Nano Energy*, 2020,77:105170