能量最低构型 Ca_2B_4 团簇的储氢性能

唐玉朋*.1 赵燕飞² 杨海英¹ 李 楠³ (¹运城学院应用化学系,运城 044000) (²运城学院理科实验中心,运城 044000) (³北京理工大学机电学院爆炸科学与技术重点实验室,北京 100081)

摘要:基于密度泛函理论,研究了 Ca₂B₄团簇的几何结构、电子特征和储氢性能。前 2 个与第 4 个能量最低构型 Ca₂B₄ 01、Ca₂B₄ 02和 Ca₂B₄ 04有很高的热力学稳定性,分别最多可以吸附 12、12和 10 个氢分子,达到 16.3%、16.3%和 14.0%的储氢量,超过了 美国能源部提出的目标(5.5%)。Ca₂B₄ 01(H₂)₁₂、Ca₂B₄ 02(H₂)₁₂和 Ca₂B₄ 04(H₂)₁₀的平均每个氢分子吸附能量分别为 0.58~4.21 eV、 0.54~3.69 eV和 0.10~0.12 eV。玻恩-奥本海默分子动力学模拟表明, Ca₂B₄ 01和 Ca₂B₄ 02 可作为潜在吸附氢气的候选目标,而 Ca₂B₄ 04不行。吉布斯自由能校正的氢吸附能结果表明,在 101 325 Pa下, Ca₂B₄ 01和 Ca₂B₄ 02 吸附 12 个氢气分子有较大的可 调节的温度范围。

关键词:储氢;密度泛函理论;吸附;分子动力学;吉布斯自由能
中图分类号:0614.23⁺1;0613.8⁺1
文献标识码:A
文章编号:1001-4861(2022)07-1391-11
DOI:10.11862/CJIC.2022.118

Hydrogen Storage Capabilities of the Low-Lying Ca₂B₄ Clusters

TANG Yu-Peng^{*,1} ZHAO Yan-Fei² YANG Hai-Ying¹ LI Nan³

 (¹Department of Applied chemistry, Yuncheng University, Yuncheng, Shanxi 044000, China)
 (²Science Experiment Center, Yuncheng University, Yuncheng, Shanxi 044000, China)
 (³State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China)

Abstract: The structural feature and electronic property of Ca_2B_4 , as well as its potential for hydrogen storage, have been studied using density functional theory. The first, second, and fourth low-lying isomers Ca_2B_4 **01**, Ca_2B_4 **02**, and Ca_2B_4 **04** have high stabilities in thermodynamics and can adsorb 12, 12, and 10 H₂ molecules with respective H₂ gravimetric uptake capacity of 16.3%, 16.3%, and 14.0%, which far exceeds the target (5.5%) proposed by the US department of energy (DOE). The average absorption energies per H₂ molecule are in the range of 0.58-4.21 eV for Ca_2B_4 **01**(H₂)₁₂, 0.54-3.69 eV for Ca_2B_4 **02**(H₂)₁₂, and 0.10-0.12 eV for Ca_2B_4 **04**(H₂)₁₀. Born-Oppenheimer molecular dynamic (BOMD) simulations indicate Ca_2B_4 **01** and Ca_2B_4 **02** are promising candidates for adsorbing hydrogen, but Ca_2B_4 **04** is not. The results of hydrogen adsorption energies with Gibbs free energy correction indicate that 12 H₂ molecules on Ca_2B_4 **01** and Ca_2B_4 **02** are energetically favorable with a wide range of temperatures at 101 325 Pa.

Keywords: hydrogen storage; density functional theory; absorption; molecular dynamic; Gibbs free energy

收稿日期:2022-01-16。收修改稿日期:2022-04-21。

运城学院基础研究课题(No.CY-2020018)、山西省基础研究课题(No.20210302124345)、山西省省筹留学人员回国专项课题(No.NO2020-140)与山西省应用基础研究计划面上青年项目(No.201901D211460)资助。

*通信联系人。E-mail:jctyp@163.com

Hydrogen is considered to be a sustainable and eco-friendly energy carrier because of its abundance, easy synthesis, and high heat thermal capacity on the earth^[1-2]. However, the wide-scale use of hydrogen fuel hinges on our ability to find safe and cost - effective hydrogen storage materials. The ideal hydrogen storage materials should meet the stringent requirements: high gravimetric and volumetric density, fast kinetics, and thermodynamics that allow reversible hydrogen adsorption and desorption in H₂ molecular form to take place under ambient conditions^[3-6]. According to the guidelines set by the US Department of Energy (DOE), a minimum requirement for a system to be a potential hydrogen storage candidate is that it should possess a minimum H₂ gravimetric uptake capacity of 5.5% and delivery under 1 200 kPa pressure in the operating ambient temperature range of 233 to 333 K^[7].

Traditionally, the storage materials bind the hydrogen atoms primarily through three different processes^[1,6]. In chemisorption, the H₂ molecules dissociate into individual atoms, migrate into the storage material, and are strongly bonded with the binding energy in the range of 2-4 eV like chemical hydrides^[8-9], in which the strong interaction makes it difficult to release H₂ during application. On the other hand, like the pure carbon-based nanostructures, the H₂ is bonded weakly via physisorption and remains in its molecular form with the binding energy in the range of few $meV^{[10]}$. However, the major drawbacks in physisorption are that the adsorption must be carried out at a very low temperature and high gas pressure. Recently, more attempts have been made to design and develop new hydrogen storage materials based on the third form of adsorption, which is intermediate between physisorption and chemisorption with the binding energy of 0.1-0.8 eV and considered to be essential for the faster adsorption and desorption kinetics for vehicular application. It includes metal-decorated nanomaterials^[11-18]. transition metal - acetylene/ethylene^[19-28], and transition metal clusters^[29-33]. For example, Sun et al.^[14] predicted the hydrogen storage capacities of the Li₁₂C₆₀ cluster in which each Li atom could adsorb a maximum of 5 H₂ molecules leading to a gravimetric density (w/w) of 13%. Durgun et al.^[23] theoretically indicated $Ti_2 - C_2H_4$ could adsorb a maximum of 10 H₂ molecules with the average binding energy of 0.45 eV. Du et al.^[29] recently predicted that the carbon motif CTi_7^{2+} could bind 20 H₂ molecules at most, which resulted in a gravimetric density of 19%.

Compared with carbon - based materials, metal decorate boron clusters have also been considered a promising candidate for hydrogen storage^[34-42]. For example, B₆Li₈ was predicted to be an excellent hydrogen storage media with gravimetric density likely reaching up to a theoretical limit of 24%^[35]. Du et al.^[39] have investigated the hydrogen storage capacity of the Saturn - like charge - transfer complex Li_4B_{40} , in which each Li atom could bind 6 H2 molecules at most resulting in the gravimetric density of 10.4%. Just like the alkali metal decorated materials, boron clusters doped by transition metals have become a research hotspot^[43-47]. Very recently, the highly stable $Sc_2B_4^{2+}$ cluster was investigated as a promising candidate for hydrogen storage material, which corresponded to a hydrogen uptake of 17.49% and average binding energy of 0.42 eV^[46]. As we know, the transition metal Sc is expensive and charge neutrality should be a consideration in the engineering of practical materials for hydrogen storage. On the other hand, we have called attention to the isoelectronic relationship of a Ca atom to a Sc⁺ ion. Moreover, calcium has been suggested to functionalize the nanomaterials as hydrogen storage materials because of its relatively small cohesive energy and moderate interaction with H₂ molecules^[15-16,40-41,48]. For example, the inverse sandwich Ca₂B₈ was found to be a promising hydrogen storage material that showed moderate adsorption energy and high gravimetric density (10.6%) for H₂^[48].

Therefore, in the current work, we choose Ca_2B_4 as the theoretical research model to investigate the corresponding geometrical configuration and electronic structures, and further probe into the hydrogen storage abilities of the low-lying isomers.

1 Computational methods

The 1 000 initial structures of Ca2B4 were generated

by a stochastic search method embedded in the Molclus program^[49], and the resulting structures were optimized in the singlet state and triplet state at the PBE0/6 - 311+G(d) level^[50-53], respectively. The PBE0 functional is an effective tool in studies of the metaldoped boron clusters^[54-55]. The vibrational frequencies of all the local minima were confirmed at the same level to guarantee that the structures optimized are true minima on the potential energy surface. To obtain the reasonable adsorption energy of H₂ molecules on Ca₂B₄ clusters, the molecular structures of the isolated and H2adsorbed Ca₂B₄ were further fully optimized without any symmetry constraints using the $\omega B97XD$ function $al^{[56]}$ in conjunctions with 6-311+G(d, p) basis set. The ω B97XD functional with the long - range interactions has been proven to be an authentic method for predicting non - covalent interactions^[29,39,42-43]. The basis set superposition errors (BSSE)^[57] were corrected using the full counterpoise method for all the H2-adsorbed Ca2B4 structures. To evaluate the reversibility of storage of H₂ molecules, the successive adsorption energy (ΔE_s) and the average absorption energy per H₂ molecule (ΔE_a) were calculated at ω B97XD/6 - 311+G (d, p) level according to the following formulas:

$$\Delta E_{s} = E_{Ca_{2}B_{4}(H_{2})_{n-1}} + E_{H_{2}} - E_{Ca_{2}B_{4}(H_{2})_{n}}$$
(1)

$$\Delta E_{a} = (E_{Ca_{2}B_{4}} + nE_{H_{2}} - E_{Ca_{2}B_{4}(H_{2})_{n}})/n$$
⁽²⁾

Where $E_{\rm X}$ stands for the total energy of X (X=Ca₂B₄, H₂, Ca₂B₄(H₂)_{*n*-1}, Ca₂B₄(H₂)_{*n*}). Notably, the spontaneous adsorption of H₂ can occur if the $\Delta E_{\rm s}$ is positive, and the negative $\Delta E_{\rm s}$ means the successive adsorption is difficult.

The H_2 gravimetric density of Ca_2B_4 was calculated using the following equation:

Gravimetric density= $M_{\rm H_2}/(M_{\rm H_2}+M_{\rm Ca_2B_4})\times100\%$ (3) Where $M_{\rm H_2}$ represents the mass of the total number of H₂ molecules adsorbed and $M_{\rm Ca_2B_4}$ represents the mass of the host Ca₂B₄.

Besides, Born - Oppenheimer molecular dynamics (BOMD) simulations at the temperatures of 77 and 300 K were performed for the relaxed structures of selected species Ca_2B_4 **01**(H_2)₁₂, Ca_2B_4 **02**(H_2)₁₂, and Ca_2B_4 **04**(H_2)₁₀ at the ω B97XD/6-31+G(d, p) level.

All the geometry optimization and property calculation were performed using the Gaussian 09 package.

2 Result and discussion

2.1 Geometrical and electronic structure of Ca₂B₄

2.1.1 Geometrical structure of Ca₂B₄

A total of 16 low - lying isomers for Ca_2B_4 were identified via extensive structural searches. To ensure the energetics, all optimized isomers were benchmarked using single-point CCSD(T) [58] calculations. Fig.1 represents the structures and relative energies of each isomer at the CCSD(T)/6-311+G(d)//PBE0/6-311+ G(d) level. Ca_2B_4 **01** is the most stable structure, which is only 0.035, 0.078, and 0.089 eV less in energy than the top three competitors (Ca_2B_4 02, Ca_2B_4 03, and Ca_2B_4 **04**), respectively. On the other hand, although Ca_2B_4 02 and Ca_2B_4 03 have the same geometries, Ca_2B_4 02 with a singlet state is more stable than the triplet Ca_2B_4 03. Therefore, the geometrical configurations, electronic properties, and the hydrogen storage abilities for the first, second, and fourth low-lying isomers Ca₂B₄ **01**, Ca₂B₄ **02**, and Ca₂B₄ **04** were researched. The calculated key bond lengths of the bare and H₂ adsorbed compounds Ca₂B₄ 01, Ca₂B₄ 02, and Ca₂B₄ 04 at ω B97XD/6-311+G(d, p) level are listed in Table 1. Notably, Ca_2B_4 **01**(H₂)₁₂ and Ca_2B_4 **02**(H₂)₁₂ have the same geometries. Comparing the isolated Ca₂B₄ isomers, the corresponding B-B and B-Ca bonds in Ca_2B_4 **02**(H₂)₁₂ and Ca_2B_4 **04**(H₂)₁₀ are not considerable change, which indicates the structures of Ca₂B₄ are not distorted with adsorption of a maximum of H₂ molecules. Moreover, the smallest vibrational frequency (Table 1) of the bare isomers is predicted to be 98, 115, and 130 cm⁻¹, which are sufficiently large to meet a stability criterion suggested by Hoffmann et al.^[59] In addition, the energy gap $(\Delta E_{\rm HI})$ between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) was also calculated to analyze the stabilities of Ca_2B_4 **01**, Ca_2B_4 **02**, and Ca_2B_4 **04** due to a large $\Delta E_{\rm HL}$ can reflect the high stabilities of compounds. The ΔE_{HL} of Ca₂B₄ **01**, Ca₂B₄ **02**, and Ca₂B₄ 04 are 4.02, 4.16, and 4.88 eV, respectively, indicating the three clusters have high stabilities. To further study

Relative energies (ΔE) are given in eV at CCSD(T)/6-311+G(d)//PBE0/6-311+G(d) level; Capital letters S and T in parenthesis denote the singlet state and the triplet state, respectively; Green spheres represent Ca atoms and the pink spheres represent B atoms

Fig.1 Optimized low-lying isomeric structures of Ca₂B₄ at PBE0/6-311+G(d) level

Table 1B—B/Ca bond distances (nm) and the lowest vibrational frequency ω_L (cm⁻¹) of the isolated
and multiple H₂ adsorbed compounds at ω B97XD/6-311+G(d, p) level

Species	$d_{\rm B1-B2}$ / nm	$d_{\rm B1-B3}$ / nm	$d_{\rm B1-B4}/\rm nm$	$d_{\rm B2-B3}/\rm nm$	$d_{\mathrm{B2-Ca5}}$ / nm	$d_{\rm B3-Ca5}/\rm nm$	$\omega_{ m L}$ / cm ⁻¹
Ca_2B_4 01	0.165	0.172	0.153	0.165	0.244	0.274	98
$Ca_{2}B_{4}\ \boldsymbol{01}(H_{2})_{12}$	0.155	0.169	0.155	0.165	0.293	0.250	—
Ca_2B_4 02	0.158	0.170	0.158	0.173	0.234	0.248	115
$Ca_2B4 \ 02(H_2)_{12}$	0.155	0.169	0.155	0.165	0.293	0.250	—
Ca ₂ B ₄ 04	0.158	0.154	0.154	0.154	0.268	0.248	130
$Ca_2B_4 \ 04(H_2)_{10}$	0.157	0.154	0.154	0.154	0.271	0.251	_

the thermodynamic stabilities, BOMD simulations were carried out for 5 ps at 300 K. As shown in Fig.2, the relative potential energies for Ca_2B_4 **01**, Ca_2B_4 **02**, and Ca_2B_4 **04** in the simulated time show slight oscillations, suggesting their high stabilities at room temperature. To gain clear geometries, the extracted snapshots of Ca_2B_4 **01**, Ca_2B_4 **02**, and Ca_2B_4 **04** at different simulation times (50, 2 500, and 5 000 fs) are also depicted in Fig.2.

2.1.2 Electronic structure of Ca₂B₄

To analyze the electronic structure and the effect of H_2 molecules adsorbed, the Mulliken charge for Ca₂B₄ isomer has been calculated at ω B97XD/6-311G (d, p) level. As shown in Fig. 3, in Ca₂B₄ **01**, the boron and calcium atoms carry about -0.183e, -0.651e, -0.181e, -0.092e, 0.554e, and 0.555e, respectively. For Ca₂B₄ **02**, the four boron atoms (B1-B4) have -0.283e, -0.314e, -0.586e, and -0.314e, respectively. Two calcium atoms (Ca5-Ca6) have 0.749e and 0.749e, respectively. In Ca₂B₄ **04**, the boron and calcium atoms carry about -0.234e, -0.234e, -0.646e, -0.646e, 0.880e, and 0.880e, respectively. The strong charges transfer from calcium atoms to boron atoms when these com-

pounds are formed. Therefore, partially charged Ca ion and B4 may produce a local electrostatic field that can polarize H₂ molecules and then bind them via the polarization mechanism. To further illustrate the above concept, the contour plots of the molecular electrostatic potential (E_{sp}) of Ca₂B₄ **01**, Ca₂B₄ **02**, and Ca₂B₄ **04** isomers were also obtained by Multiwfn^[60]. As illustrated in Fig. 4, the calcium and boron atoms have a positive and negative potential, respectively. The map of E_{sp} diffusion accords with the Mulliken charge analysis, indicating the H₂ molecules should be preferentially ad-

Inset: extracted snapshots at different simulation times (50, 2 500, and 5 000 fs); Green spheres represent Ca atoms and pink spheres represent B atoms

Fig.2 Variations of potential energy vs simulation time at 300 K for Ca₂B₄ **01**, Ca₂B₄ **02**, and Ca₂B₄ **04**

Fig.3 Mulliken charge of Ca_2B_4 **01**, Ca_2B_4 **02**, and Ca_2B_4 **04** at the ω B97XD/6-311G (*d*, *p*) level

Cyan spheres represent Ca atoms and the pink spheres represent B atoms

Fig.4 E_{sp} maps of Ca₂B₄ **01**, Ca₂B₄ **02**, and Ca₂B₄ **04** at the ω B97XD/6-311G (*d*, *p*) level

sorbed on calcium atoms.

2.2 H_2 adsorption behavior of Ca₂B₄

2.2.1 H_2 adsorption behavior of Ca_2B_4 **01**

We next studied the sequential hydrogenation of Ca_2B_4 **01**. Based on the above analysis, the Ca atom is the most active atom in all sites during the process of H_2 adsorption. Considering the symmetry of the isomers Ca_2B_4 **01**, a number of H_2 molecules were successively placed around every Ca atom, and the structures were optimized without any symmetry constraints at the $\omega B97XD$ level of theory, respectively. The optimized structures of the isomer Ca_2B_4 **01** with adsorbed multiple H_2 molecules at the $\omega B97XD$ level of theory are depicted in Fig. S1 (Supporting information). The selected relaxed configurations Ca_2B_4 **01**(H_2)₁₂ is depicted in Fig.5.

 Ca_2B_4 **01** can at most adsorb 12 H₂ molecules and the gravimetric density of stored hydrogen is 16.3%, which is about 3.3 times larger than the criteria of 5.5% proposed by DOE^[7]. As listed in Table 2, the bond lengths of the adsorbed molecular form H₂ in Ca_2B_4 **01**(H₂)₁₂ are 0.075 nm, which is elongated compared to the bond length (0.074 nm) of isolated H_2 at the same calculated level. Notably, the binding of the first molecule to Ca_2B_4 **01** isomer has five different characteristics (Fig.S1). Among them, the H₂ molecule interacts dissociatively with two B atoms and the resulting borohydride structure is the ground - state (1a), which is 0.35, 0.37, 0.46, and 4.21 eV lower in energy than 1b, 1c, 1d, and 1e, respectively. It is for this reason that we have concentrated an adding successive H₂ molecules to the ground - state structure. Next, the adsorption of the second H_2 molecule to Ca_2B_4 **01** $(H_2)_1$ (1a) has two different characteristics. Here, hydrogen binds molecularly to one of the Ca atoms and the resulting isomer (Fig. S1, 2b) is 0.72 eV higher in energy

第38卷

Gray spheres represent H atoms

Fig.5 Optimized geometries of Ca_2B_4 **01**(H_2)₁₂, Ca_2B_4 **02**(H_2)₁₂, and Ca_2B_4 **04**(H_2)₁₀ at the ω B97XD/6-311+G (d, p) level

Table 2Ca—H and corresponding H—H distances (nm) of $Ca_2B_4 01(H_2)_{12}/Ca_2B_4 02(H_2)_{12}$ and
 $Ca_2B_4 04(H_2)_{10}$ at $\omega B97XD/6-311+G(d, p)$ level

Bond	$Ca_2B_4 01(H_2)_{12}$	$/Ca_2B_4 02(H_2)_{12}$	$Ca_2B_4 \ 04(H_2)_{10}$		
	$d_{ m Ca-H}$ / nm	$d_{\mathrm{H-H}^{\mathrm{a}}}$ / nm	$d_{ m Ca-H}$ / nm	$d_{\mathrm{H-H}}$ / nm	
Са5—Н	0.259-0.281	0.075	0.236-0.268	0.076-0.077	
Са6—Н	0.260-0.281	0.075	0.235-0.267	0.076-0.077	

^a Adsorbed H₂ in Ca₂B₄ **01**(H₂)₁₂ is in molecular form.

1397

than the ground-state structure (2a) in which the second H₂ molecule dissociates with two H atoms bridging between two Ca atoms. As listed in Table 3, the successive binding energies of the ground states of Ca₂B₄ 01 $(H_2)_1$ and Ca_2B_4 **01** $(H_2)_2$ are 4.21 and 1.67 eV respectively, indicating the binding of the first two molecules belongs to the chemisorption process. It is only when the third H_2 molecule is added to **2a** that the binding becomes molecular, with successive energy of 0.11 eV. The H₂ molecules from the fourth to the twelfth also bind to the Ca atoms in nearly molecular form. The binding energies of each successive H₂ molecule are in the range of 0.11-0.12 eV as one proceeds from Ca_2B_4 $01(H_2)_3$ to Ca_2B_4 $01(H_2)_{12}$. To confirm the adsorption of H_2 molecules to Ca_2B_4 **01** is reversible or not, the ΔE_a of Ca_2B_4 **01**(H₂)_n (n=1-12) are also illustrated in Table 3. Ca₂B₄ **01** adsorbs 1-12 H₂ molecules with the ΔE_{a} of 4.21 to 0.58 eV. It can be found that some ΔE_{*} values are too large and exceed the energy criteria (0.1-0.8 eV) of the reversible hydrogen storage. Because the strong chemical bonds between the dissociation of the first two H₂ molecules and B/Ca atoms improve the ΔE_a of compounds. However, more remarkably, the average adsorptions energy of Ca_2B_4 **01**(H₂)₁₂ is 0.58 eV, which is ideal for reversible hydrogen storage at near ambient conditions.

2.2.2 H_2 adsorption behavior of Ca_2B_4 02

The optimized structures of H₂-adsorbed Ca₂B₄ 02

are depicted in Fig.S2. Notably, the binding of the first molecule to Ca₂B₄ **01** isomer has three different characteristics (Fig. S2) and the ground - state structure of Ca_2B_4 **02**(H₂)₁ (**1a**') is exactly the same as Ca_2B_4 **01**(H₂)₁ (1a). As illustrated in Table 3, the successive binding energies of the ground state Ca_2B_4 **01**(H₂)₁ (**1a**') is 3.69 eV, indicating the binding of the first molecule belongs to the chemisorption process. It is when the second H_2 molecule is added to 1a' that the H_2 adsorbed structures Ca_2B_4 **02** are exactly the same as the corresponding H₂ adsorbed structures Ca₂B₄ **01**. The ΔE_a of Ca₂B₄ $02(H_2)_n$ (n=1-12) are also listed in Table 3. Ca₂B₄ 02 adsorbs 1-12 H₂ molecules with the ΔE_a of 3.69 to 0.54 eV. The ΔE_a of Ca_2B_4 **02**(H₂)₁₂ is 0.54 eV, which is ideal for reversible hydrogen storage at near ambient conditions.

2.2.3 H_2 adsorption behavior of Ca_2B_4 04

The optimized structures of H_2 -adsorbed Ca_2B_4 **04** are depicted in Fig. S2. Ca_2B_4 **04** can successively adsorb 10 H_2 molecules in total, from one to five H_2 molecules on each Ca atom. The selected relaxed configuration Ca_2B_4 **04** $(H_2)_{10}$ is depicted in Fig.5. The Ca— H distances and the corresponding H—H bond lengths are listed in Table 2. The Ca—H distances are in a range of 0.235-0.267 nm, and the corresponding H—H bond lengths are elongated to 0.076 - 0.077 nm. As shown in Table 3, the ΔE_s values are in a range of 0.10-0.14 eV for H_2 -adsorbed Ca_2B_4 **04**. The positive energy

Table 3	Calculated ΔE_s and ΔE_a with BSSE correction and without zero-point energy
	correction at ω B97XD/6-311+G (d, p) level

n	Ca_2B_4	Ca_2B_4 01 $(H_2)_n$		$Ca_2B_4 02(H_2)_n$		Ca_2B_4 04 $(H_2)_n$	
	$\Delta E_{ m s}$ / eV	$\Delta E_{\rm a}/{\rm eV}$	$\Delta E_{ m s}$ / eV	$\Delta E_{\rm a}$ / eV	$\Delta E_{ m s}$ / eV	$\Delta E_{\rm a}/{\rm eV}$	
1	4.21	4.21	3.69	3.69	0.12	0.12	
2	1.67	2.93	1.67	2.67	0.12	0.12	
3	0.11	1.99	0.11	1.82	0.11	0.12	
4	0.11	1.52	0.11	1.38	0.14	0.12	
5	0.12	1.23	0.12	1.13	0.10	0.12	
6	0.11	1.04	0.11	0.96	0.13	0.12	
7	0.11	0.91	0.11	0.84	0.12	0.12	
8	0.11	0.81	0.11	0.75	0.12	0.12	
9	0.11	0.74	0.11	0.68	0.13	0.11	
10	0.11	0.67	0.11	0.62	0.13	0.10	
11	0.12	0.62	0.12	0.58	—	—	
12	0.12	0.58	0.12	0.54	_	—	

values of ΔE_s indicate that 10 H₂ molecules can be effectively adsorbed on Ca₂B₄ **04**. Besides, the ΔE_a of Ca₂B₄ **04**(H₂)_n (n=1-10) are in a range of 0.10 to 0.12 eV which meets the criteria (0.1-0.8 eV) of reversible hydrogen storage. For Ca₂B₄ **04**(H₂)₁₀, the gravimetric density of stored hydrogen is 14.0%. The result surpasses the target for hydrogen uptake capacity specified by DOE.

2.3 Reversibility of H_2 molecules on Ca_2B_4 01, Ca_2B_4 02, and Ca_2B_4 04

To test the hydrogen release for Ca_2B_4 **01**(H_2)₁₂, Ca_2B_4 **02**(H_2)₁₂, and Ca_2B_4 **04**(H_2)₁₀ at ambient conditions, we performed the BOMD simulations at the ω B97XD/6-31+G (*d*, *p*) level. The BOMD simulations were carried out with a time of scale of 800 fs with a trajectory step size of 0.5 fs at the temperatures of 77 and 298 K. Fig.6 shows the potential energies as functions of time, and the extracted snapshots at different simulation times (50, 100, 200, 300, 400, and 500 fs) are depicted in Fig.S3-S6. For Ca_2B_4 **01**(H_2)₁₂/ Ca_2B_4 **02** (H_2)₁₂, 10 H₂ molecules far from Ca sites have begun to run away from the host Ca_2B_4 **01** cluster within 100 fs, and the H₂ molecules desorb faster at the higher temperatures. On the other hand, at the end of simulations of 77 and 298 K, only the first two H₂ molecules are still adsorbed in atom form, whereas the other ten H₂ in the molecular form completely escape from Ca_2B_4 **01**, corresponding to a release ratio of 83.3%, which is excellent agreement with the discussed adsorption mechanism above. Interestingly, Ca_2B_4 **01**(H₂)₂ structure shows a high dynamic stability at 77 and 298 K, being in line with the values of ΔE_{a} and ΔE_{s} . Moreover, it can be found from the snapshots of Fig. S3 and S4 that the host clusters Ca₂B₄ **01** and Ca₂B₄ **02** are not significantly deformed during the dynamic simulation processes. Therefore, we can conclude that the clusters Ca_2B_4 **01** and Ca_2B_4 **02** are appropriate candidates for reversible hydrogen storage. For Ca_2B_4 04(H₂)₁₀, at the processes of simulations of 77 and 298 K, although most of the H₂ adsorbed can also completely escape from Ca₂B₄ 04, the host cluster Ca₂B₄ 04 is significantly deformed. Thus, Ca₂B₄ 04 is not an appropriate candidate for reversible hydrogen storage.

Fig.6 Potential energy trajectories of (a) Ca_2B_4 **01** $(H_2)_{12}/Ca_2B_4$ **02** $(H_2)_{12}$ and (b) Ca_2B_4 **04** $(H_2)_{10}$ complexes at the temperatures of 77 and 298 K

2.4 Gibbs free energy corrected adsorption energies ($\Delta E_{\rm G}$)

To confirm the adsorptions of Ca_2B_4 **01**(H₂)₁₂ and Ca_2B_4 **02**(H₂)₁₂ are favorable or not at different temperatures, the ΔE_G was calculated at different temperatures and 101 325 Pa. The formula is $\Delta E_G = (E_{G,Ca_2B_4} + 12E_{G,H_2} - E_{G,Ca_2B_4(H_2)_{12}})/12$, where E_{G,Ca_2B_4} , E_{G,H_2} , and $E_{G,Ca_2B_4(H_2)_{12}}$ are

the calculated Gibbs free energies of the bare cluster Ca_2B_4 , H_2 molecule, and Ca_2B_4 (H_2)₁₂, respectively. The positive ΔE_G value reflects that the adsorption of multiple H_2 molecules on Ca_2B_4 is energetically favorable at the corresponding condition. As shown in Fig. 7, the ΔE_G of Ca_2B_4 **01**(H_2)₁₂ and Ca_2B_4 **02**(H_2)₁₂ are still positive at 400 K at 101 325 Pa. It indicates that both

Fig.7 Temperature dependence of $\Delta E_{\rm G}$ values for Ca₂B₄ **01**(H₂)₁₂ and Ca₂B₄ **02**(H₂)₁₂ at ω B97XD/6-311+G (*d*, *p*) level

 Ca_2B_4 **01**(H₂)₁₂ and Ca_2B_4 **02**(H₂)₁₂ have fairly wide temperature ranges on which we can tune the thermodynamically favorable hydrogen adsorption just near room temperature at 101 325 Pa.

3 Conclusions

In this work, the structures, stabilities, and hydrogen storage behavior of Ca₂B₄ have been researched using density functional theory. According to the calculations, the first, second, and fourth low-lying isomers Ca_2B_4 01, Ca_2B_4 02, and Ca_2B_4 04 have high stabilities in thermodynamics at 300 K. For Ca2B4 01 and Ca2B4 **02**, the resulting H_2 adsorbed structures are the same and up to 12 H₂ molecules can be bound. Ca₂B₄ 04 can adsorb 10 H₂ molecules at most. The systems can have a maximum gravimetric density of 16.3% and 14.0% for Ca_2B_4 **01** $(H_2)_{12}/Ca_2B_4$ **02** $(H_2)_{12}$ and Ca_2B_4 **04** $(H_2)_{12}$, respectively, which satisfy the target specified by US DOE. The ΔE_a of 0.58-4.21 eV for Ca₂B₄ **01**(H₂)₁₂, 0.54- $3.69~{\rm eV}$ for ${\rm Ca_2B_4}~\textbf{02}({\rm H_2})_{12},$ and $0.10\text{-}0.12~{\rm eV}$ for ${\rm Ca_2B_4}$ $04(H_2)_{10}$ are in the range of the physisorption and chemisorption energy. The results of BOMD simulations indicate Ca₂B₄ **01** and Ca₂B₄ **02** can be promising candidates for adsorbing dihydrogen, but Ca₂B₄ 04 is not. Moreover, the temperature-dependent Gibbs free energy corrected adsorption energies indicate Ca₂B₄ 01 and Ca_2B_4 **02** are suitable for storage H₂ with a wide range of temperatures at 101 325 Pa.

References:

- [1]Schlapbach L, Züttel A. Hydrogen-Storage Materials for Mobile Applications. Nature, 2001,414:353-358
- [2]Sartbaeva A, Kuznetsov V L, Wells S A, Edwards P P. Hydrogen Nexus in a Sustainable Energy Future. *Energy Environ. Sci.*, 2008,1 (1):79-85
- [3]Züttel A, Remhof A, Borgschulte A, Friedrichs O. Hydrogen: The Future Energy Carrier. *Philos. Trans. R. Soc. London Ser. A*, 2010,368 (1923):3329-3342
- [4]Züttel A, Wenger P, Sudan P, Mauron P, Orimo S I. Hydrogen Density in Nanostructured Carbon, Metals and Complex Materials. *Mater. Sci. Eng. B*, 2004,108(1/2):9-18
- [5]Graetz J. New Approaches to Hydrogen Storage. Chem. Soc. Rev., 2009,38:73-82
- [6]Jena P. Materials for Hydrogen Storage: Past, Present, and Future. J. Phys. Chem. Lett., 2011,2(3):206-211
- [7]DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles. https://www.energy.gov/eere/fuelcells/doe-technical-targetsonboard-hydrogen-storage-light-duty-vehicles
- [8]Orimo S I, Nakamori Y, Eliseo J R, Züttel A, Jensen C M. Complex Hydrides for Hydrogen Storage. Chem. Rev., 2007, 107(10): 4111 -4132
- [9]Grochala W, Edwards P P. Thermal Decomposition of the Noninterstitial Hydrides for Storage and Production of Hydrogen. *Chem. Rev.*, 2004,104(3):1283-1316
- [10]Yürüm Y, Taralp A, Veziroglu T N. Storage of Hydrogen in Nanostructured Carbon materials. *Int. J. Hydrogen Energy*, **2009**, **34**(9): 3784-3798
- [11]Yildirim T, Iñiguez J, Ciraci S. Molecular and Dissociative Adsorption of Multiple Hydrogen Molecules on Transition Metal Decorated C₆₀. Phys. Rev. B, 2005,72(15):153403-153406
- [12]Sun Q, Wang Q, Jena P, Kawazoe Y. Clustering of Ti on a C₆₀ Surface and Its Effect on Hydrogen Storage. J. Am. Chem. Soc., 2005, 127(42):14582-14583
- [13]Yildirim T, Ciraci S. Titanium Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium. *Phys. Rev. Lett.*, 2005,94(17):175501-175503
- [14]Sun Q, Jena P, Wang Q, Marquez M. First-Principles Study of Hydrogen Storage on Li₁₂C₆₀. J. Am. Chem. Soc., 2006,128(30):9741-9745
- [15]Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z. Calcium as the Superior Coating Metal in Functionalization of Carbon Fullerenes for High-Capacity Hydrogen Storage. *Phys. Rev. Lett.*, 2008,100 (20):206806-206809
- [16]Zhang Y F, Cheng X L. Hydrogen Storage Property of Alkali and Alkaline-Earth Metal Atom Decorated C₂₄ fullerene: A DFT Study. *Chem. Phys.*, 2018,505:26-33
- [17]Ren H J, Cui C X, Li X J, Liu Y J. A DFT Study of the Hydrogen Storage Potentials and Properties of Na- and Li-Doped Fullerene. *Int. J. Hydrogen Energy*, 2017,42(1):312-321

- [18]Chavéz E L, Castañeda Y P, Quiroz A G, Alvarado F C, Góngora J D, González L J. Ti-Decorated C₁₂₀ Nanotorus: A New Molecular Structure for Hydrogen Storage. Int. J. Hydrogen Energy, 2017, 42(51): 30237-30241
- [19]Ma L J, Han M, Wang J, Jia J F, Wu H S. Oligomerization of Vanadium-Acethlene Systems and Its Effect on Hydrogen Storage. Int. J. Hydrogen Energy, 2017,42(20):14188-14198
- [20]Tavhare P, Kalamse V, Krishna R, Titus E, Chaudhari A. Hydrogen Adsorption on Ce - Ethylene Complex Using Quantum Chemical Methods. Int. J. Hydrogen Energy, 2016,41(27):11730-11735
- [21]Ma L J, Jia J F, Wu H S. Computational Investigation of Hydrogen Storage on Scandium - Acetylene System. Int. J. Hydrogen Energy, 2015,40(1):420-428
- [22]Kalamse V, Wadnerkar N, Chaudhari A. Hydrogen Storage in C₂H₄V and C₂H₄V⁺ Organometallic Compounds. J. Phys. Chem. C, 2010,114 (10):4704-4709
- [23]Durgun E, Ciraci S, Zhou W, Yildirim T. Transition-Metal-Ethylene Complexes as High-Capacity Hydrogen-Storage Media. *Phys. Rev. Lett.*, 2006,97(22):226102-226105
- [24]Ma L J, Jia J F, Wu H S, Ren Y. Ti-η²-(C₂H₂) and HC≡C−TiH as High Capacity Hydrogen Storage Media. Int. J. Hydrogen Energy, 2013,38(36):16185-16192
- [25]Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A. C₂H₂M (M= Ti, Li) Complex: A Possible Hydrogen Storage Material. Int. J. Hydrogen Energy, 2012,37(4):3727-3732
- [26]Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A. Interaction of Molecular Hydrogen with Ni Doped Ethylene and Acetylene Complex. Int. J. Hydrogen Energy, 2012,37(6):5114-5121
- [27]Chakraborty A, Giri S, Chattaraj P K. Analyzing the Efficiency of M_n-(C₂H₄) (M=Sc, Ti, Fe, Ni; n=1, 2) Complexes as Effective Hydrogen Storage Materials. *Struct. Chem.*, 2011,22(4):823-837
- [28]Phillips A B, Shivaram B S. High Capacity Hydrogen Absorption in Transition-Metal Ethylene Complexes: Consequences of Nanoclustering. Nanotechnology, 2009,20(20):204020-204024
- [29]Du J, Sun X, Jiang G, Zhang C. The Hydrogen Storage on Heptacoordinate Carbon motif CTi₇²⁺. Int. J. Hydrogen Energy, 2016, 41(26): 11301-11307
- [30]Venkataramanan N S, Sahara R, Mizuseki H, Kawazoe Y. Titanium-Doped Nickel Clusters TiNi_n (n=1-12): Geometry, Electronic, Magnetic, and Hydrogen Adsorption Properties. J. Phys. Chem. A, 2010, 114(15):5049-5057
- [31]Du J G, Sun X Y, Jiang G, Zhang C. Hydrogen Capability of Bimetallic Boron Cycles: A DFT and *Ab Initio* MD Study. *Int. J. Hydrogen Energy*, 2019,44(13):6763-6772
- [32]Guo C, Wang C. A Theoretical Study on Cage-like Clusters (C₁₂-Ti₆ and C₁₂-Ti₆²⁺) for Dihydrogen Storage. Int. J. Hydrogen Energy, 2019, 44(21):10763-10769
- [33]Sathe R Y, Bae H, Lee H, Kumar T J D. Hydrogen Storage Capacity of Low-Lying Isomer of C₂₄ Functionalized with Ti. Int. J. Hydrogen Energy, 2020,45(16):9936-9945
- [34]马丽娟, 王剑锋, 贾建峰, 武海顺. B12Sc4和 B12Ti4 团簇的储氢性

质.物理化学学报,2012,28(8):1854-1860

报

MA L J, WANG J F, JIA J F, WU H S. Hydrogen Storage Properties of B₁₂Sc₄ and B₁₂Ti₄ Clusters. *Acta Phys. - Chim. Sin.*, **2012**, **28**(8): 1854-1860

- [35]Tai T B, Nguyen M T. A Three-Dimensional Aromatic B₆Li₈ Complex as a High Capacity Storage Material. *Chem. Commum.*, 2013,49 (9):913-915
- [36]Bai H, Bai B, Zhang L, Huang W, Mu Y W, Zhai H J, Li S D. Lithium-Decorated Borospherene B₄₀: A Promising Hydrogen Storage Medium. *Sci. Rep.*, 2016,6:35518-35527
- [37]Dong H, Hou T, Lee S T, Li Y. New Ti-Decorated B₄₀ Fullerene as a Promising Hydrogen Storage Material. *Sci. Rep.*, 2015,5:9952-9959
- [38]Tang C M, Zhang X. The Hydrogen Storage Capacity of Sc Atoms Decorated Porous Boron Fullerene B₄₀: A DFT Study. Int. J. Hydrogen Energy, 2016,41(38):16992-16999
- [39]Du J G, Sun X Y, Zhang L, Zhang C Y, Jiang G. Hydrogen Storage of Li₄&B₃₆ Cluster. Sci. Rep., 2018,8:1940-1945
- [40]Si L, Tang C M. The Reversible Hydrogen Storage Abilities of Metal Na (Li, K, Ca, Mg, Sc, Ti, Y) Decorated All-Boron Cage B₂₈. Int. J. Hydrogen Energy, 2017,42(26):16611-16619
- [41]Lu Q L, Hang S G, Li Y D, Wan J G, Luo Q Q. Alkali and Alkaline-Earth Atom-Decorated B₃₈ Fullerenes and Their Potential for Hydrogen Storage. Int. J. Hydrogen Energy, 2015,40(38):13022-13028
- [42]Wang Y J, Xu L, Qiao L H, Ren J, Hou X R, Miao C Q. Ultra-High Capacity Hydrogen Storage of B₆Be₂ and B₈Be₂ Clusters. Int. J. Hydrogen Energy, 2020,45(23):12932-12939
- [43]Guo C, Wang C. Computational Investigation of Hydrogen Storage on B₅V₃. Mol. Phys., 2018,116(10):1290-1296
- [44]Ray S S, Sahoo S R, Sahu S. Hydrogen Storage in Scandium Doped Small Boron Clusters (B_nSc₂, n=3-10): A Density Functional Study. *Int. J. Hydrogen Energy*, **2019,44**(12):6019-6030
- [45]Huang H, Wu B, Gao Q, Li P, Yang X. Structural, Electronic and Spectral Properties Referring to Hydrogen Storage Capacity in Binary Alloy ScB_n (n=1-12) Clusters. Int. J. Hydrogen Energy, 2017,42(33): 21086-21095
- [46]Guo C, Wang C. Remarkable Hydrogen Storage on Sc₂B₄²⁺ Cluster: A Computational Study. Vacuum, 2018,149:134-139
- [47]Guo C, Wang C. The Theoretical Research of Hydrogen Storage Capacities of Cu₃B_x (x=1-4) Compounds Under Ambient Conditions. Int. J. Hydrogen Energy, 2020,45(46):24947-24957
- [48]Du J G, Jiang G. An Aromatic Ca₂B₈ Complex for Reversible Hydrogen Storage. Int. J. Hydrogen Energy, 2021,46(36):19023-19030
- [49]Lu T. Molclus Program, Version 1. 9. 9. 2, http://www.keinsci.com/ research/molclus.html
- [50]Adamo C, Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys., 1999,110(13):6158-6170
- [51]Krishnan R, Binkley J S, Seeger R, Pople J A. Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys., 1980,72(1):650-654
- [52]Clark T, Chandrasekhar J, Spitznagel G W, Schleyer P V. Efficient

Diffuse Function-Augmented Basis Sets for Anion Calculations. Ⅲ.* the 3-21+G Basis Set for First-Row Elements, Li-F. J. Comput. Chem., **1983,4**(3):294-301

- [53]Blaudeau J P. McGrath M P, Curtiss L A, Radom L. Extension of Gaussian-2 (G2) Theory to Molecules Containing Third-Row Atoms K and Ca. J. Chem. Phys., 1997,107(13):5016-5021
- [54]Wang Y J, Feng L Y, Guo J C, Zhai H J. Dynamic Mg₂B₈ Cluster: A Nanoscale Compass. *Chem. Asian J.*, 2017,12(22):2899-2903
- [55]Wang Y J, Guo M M, Wang G L, Miao C Q, Zhang N, Xue T D. The Structure and Chemical Bonding in Inverse Sandwich B₆Ca₂ and B₈Ca₂ Clusters: Conflicting Aromaticity vs. Double Aromaticity. *Phys. Chem. Chem. Phys.*, **2020,22**(36):20362-20367

[56]Chai J D, Gordon M H. Long-Range Corrected Hybrid Density Func-

tionals with Damped Atom - Atom Dispersion Corrections. *Phys. Chem. Chem. Phys.*, **2008,10**(44):6615-6620

- [57]Boys S F, Bernardi F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. *Mol. Phys.*, **1970,19**(4):553-566
- [58]Pople J A, Head-Gordon M. Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies. J. Chem. Phys., 1987,87(10):5968-5975
- [59]Hoffmann R, Schleyer P V R, Schaefer Ⅲ H F. Predicting Molecules— More Realism, Please! Angew. Chem. Int. Ed., 2008, 47(38): 7164 -7167
- [60]Lu T, Chen F W. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem., 2012,33(5):580-592