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Semiconductive Ni-MOFs Based on 5-(Hydroxymethyl) Isophthalic Acid and
Imidazole Derivatives: Synthesis, Crystal Structures, and Photocatalytic Properties
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Abstract: Two complexes {[Ni(HIPA)(2,5-DPBI), ;(H,0)]-2.25H,0}, (1) and [Ni(HIPA) (2,5 - DPBMI) (H,0)], (2)
(H,HIPA=5-(hydroxymethyl) isophthalic acid, 2,5-DPBI=1,1"-(2,5-dimethyl-1,4-phenylene)bis(1 H-imidazole), 2,5-
DPBMI=1,1"-(2,5-dimethyl-1,4-phenylene)bis(4-methyl-1H-imidazole)) were synthesized via hydrothermal method.
Structural analysis reveals that Ni(Il) centers have different coordination environments in the existence of different
imidazole ligands. As a result, complex 1 possesses a 5 - connected framework with the topological symbol of
(4°.6°.8%), while complex 2 shows a 4-connected framework with dia net. The powder X-ray diffraction further firms
that complexes 1 and 2 are very stable not only in a normal organic solvent but also in water under UV light. More-
over, the UV-Vis spectra, Mott-Schottky measurements, and electrochemical impedance spectroscopy (EIS) demon-
strate that complex 1 and 2 are typical n-type semiconductors with low resistance in charge transportation. Finally,

photocatalytic tests confirm that complexes 1 and 2 have catalytic activity for the degradation of methylene blue.
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Metal-organic frameworks (MOF's) as a kind of rel-
atively new crystalline materials possess intriguing
architectures and some potential applications in hetero-
geneous catalysis, recognition, gas storage, separation,

[1-3

and so on'"’. Therefore, designing and synthesizing

MOFs to meet different needs have scientific signifi-

46
6 However, the

cance and applied importance
obtained structures of MOFs are influenced by temper-
ature, solvent system, metal ions, ligands, pH value,
and even ratio of metal and ligand”"". So it is difficult
to adjust reaction conditions to obtain MOFs with spe-
cific structures in crystal engineering. Fortunately,
organic ligands play a critical role among such synthet-
ic factors, and selecting an appropriate ligand to assem-
ble with metal ions is a feasible method to build target
MOFs"""?. Aromatic carboxylic acids have been exten-
sively used in the synthesis of MOFs owing to their rich
coordination modes and diversified structures. Many
functional MOFs based on aromatic carboxylic acids,
such as HKUST-1, MOF-5, and MIL-101, have been
used in different field"*'*. Furthermore, N - containing
imidazole derivatives are also a kind of effective
ligands. Their different shapes and nuclearity can form
various MOF's as second ligands in the presence of aro-
matic carboxylic acids. Although these strategies have
been wildly applied in obtaining MOFs for several
years, it is still a promising direction for us to further
study!>,

With the increasing textile industry and printing
activities, a colossal amount of industrial wastewater
containing organic dyes caused the deterioration of the
aquatic ecosystem™. However, it is a challenge to
clear organic dyes from wastewater via conventional
methods for their high solubility™!. Photocatalytic deg-
radation can decompose most organic pollutants into
non-polluting small molecules™'. Ti0O,, Sn0,, ZnO, etc.
as semi-conductive photo-catalysts have been used to
degrade organic dyes. But shortcoming in low absorp-
tion efficiency for light limits their further applica-
tions™. MOFs materials as a new class of photocata-
lysts have been developed for their tailored structures
and high absorption efficiency for light in the ultraviolet-

visible region. Given that, some semi-conductive MOFs

have been used to degrade organic dyes by many

P72 So it is a very significant work to fur-

researchers
ther construct semi - conductive MOFs for disposing
organic dyes.

As one of the aromatic carboxylic acids, 5 -
(hydroxymethyl) isophthalic acid (H,HIPA) is an effec-
tive and versatile linker for its own advantages: (1) two
rigid carboxylate groups with variable coordination
modes; (2) 5-hydroxymethyl group acting as hydrogen
bonding donor and/or acceptor™. Based on aforemen-
tioned search backgrounds, we selected H,HIPA to
react with Ni(Il) to build MOFs under the help of imid-
azole derivatives 1,1'-(2,5-dimethyl-1,4-phenylene)bis
(1H-imidazole) (2,5-DPBI) and 1,1'-(2,5-dimethyl-1,4-
phenylene)bis(4 - methyl - 1H - imidazole) (2,5-DPBMI),
respectively (Scheme 1). As a result, two 3D Ni-MOFs,
{INi(HIPA) (2, 5-DPBI), s(H,0)] -2.25H,0}, (1) and
[Ni(HIPA)(2,5-DPBMI) (H,0)], (2), were obtained via
hydrothermal synthesis. Herein, we report their synthet-
ic processes, crystal structures, semi-conductive char-
acteristics, and photocatalytic properties in the degra-

dation of organic dye.
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HZHIPA 2,5-DPBI 2,5-DPBMI
Scheme 1 Structures of ligands H,HIPA, 2,5-DPBI, and

2,5-DPBMI
1 Experimental

1.1 Materials and methods

H,HIPA was obtained according to our previous
work™, and the other chemicals were commercially
available and used without further purification. Powder
X -ray diffraction (PXRD) patterns were gained via a
Rigaku MiniFlex 600 diffractometer (U=40 kV, I=15
mA, Cu Ka radiation, A =0.154 060 nm) from 5.00° to
50.00°. Thermogravimetric analyses (TGA) were per-
formed on a NETSCHZ STA -F3 thermoanalyzer from

room temperature to 800 °C. Elemental analysis results
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were acquired by a PerkinElmer 240C elemental ana-
lyzer. Electrochemical tests were carried out on a CHI
760E electrochemical workstation equipped with a
standard three - electrode system. UV - Vis absorption
spectra and the content of dye were determined by a
Shimadzu UV-3600 Plus spectrophotometer.
1.2 Synthesis of Ni-MOF 1

H,HIPA (20 mg, 0.10 mmol), 2,5-DPBI (40 mg,
0.15 mmol), Ni(NO,),-6H,0 (0.15 mmol, 45 mg) and
NaOH (20 mg, 0.25 mmol) were dissolved in 6 mL of
deionized water. Then the reactive mixture was auto-
claved at 130 °C for 48 h and slowly cooled to room
temperature, resulting in blue block-shaped crystals of
1 in 30% yield (based on H,HIPA). Anal. Caled. for
C3oHooNgNiOy(%): C, 57.35; H, 4.65; N, 13.38. Found
(%): C, 56.92; H, 4.72; N, 13.16. IR (KBr pellet, cm™):
3304m, 3 112w, 1 640s, 1 665s, 1 571s,1510s, 1 429m,
1 287m, 1 225m, 1 120w, 1 064m, 959w, 934w, 773w,
736w, 662w, 581w, 463w.
1.3 Synthesis of Ni-MOF 2

The synthetic procedure of 2 was similar to that of
1, except 2,5-DPBI was replaced by 2,5-DPBMI. Blue
block crystals of 2 were collected with a yield of 40%
(based on H,HIPA). Anal. Calcd. for C,sHyN,NiO(%):
C, 55.90; H, 4.88; N, 10.43. Found (%): C, 56.20; H,
4.92; N, 10.12. IR (KBr pellet, cm™): 3 437m, 3 162w,
1621m, 1547s,1522s,1543m, 1 373s, 1 200w, 1 113w,
1 064w, 1 027w, 779w, 724w, 662w, 594w, 439w.
1.4 Photocatalytic degradation reaction

Methylene blue (MB) was selected as a model
organic dye in water samples for photocatalytic degra-

dation reactions. The reaction was according to the fol-

lowing processes: 60 mg of complex 1 or 2 was mixed
together with 60 mL of an aqueous solution of MB (5
mg-L”") under stirring in the dark for an hour till
adsorption-desorption equilibrium between catalyst
and MB was established. Then the solution was
exposed to UV light from a mercury lamp (300 W) and
kept continuously stirring under irradiation. The sam-
ples of 3 mL were taken out every 30 min for the analy-
sis. The content of MB was determined through UV-Vis
absorption intensity on a Shimadzu UV-3600 Plus
spectrophotometer.
1.5 Crystal-structural determination

Two single crystals with dimensions of 0.20 mmX
0.20 mmx*0.20 mm (1) and 0.30 mmx0.2 mmX0.20 mm
(2) were selected, relatively, and the data were collect-
ed by a Rigaku 003 CCD diffractometer with a Mo Ka
radiation (A =0.071 073 nm) at room temperature. The
final structures were determined via the SHELXT -
2014 program and refined with full - matrix least -
squares techniques by the SHELXL-2017 program on
Olex2-1.2 software”?*. All non-hydrogen atoms were
refined anisotropically. All the hydrogen atoms from C
atoms were positioned geometrically and refined using
a riding model, and the H atoms from coordinated H,0
moieties were located by difference maps and con-
strained to ride on their parent O atoms. The basic
information for the crystal and structural refinement
data and some selected bond length and angles for com-
plexes 1 and 2 are listed in Table 1 and S1 (Supporting
information), respectively.

CCDC: 2114481, 1; 2114482, 2.

Table 1 Crystal data and structure refinement details for complexes 1 and 2

Parameter

1 2

Formula
Formula weight

Crystal system

Space group P2/c

2.045 89(14)

0.892 25(5) 0.830 80(5)
1.972 01(13)

117.217(9)
3.201 2(4)

a/nm
b/ nm
¢/ nm
BIC)

V/nm?

CaoHoNgNiOg
627.29

Monoclinic

€5, N, NiO,
537.21
Monoclinic
P2/c

1.556 78(11)

1.975 82(11)
100.301(6)
2.5143(3)
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Continued Table 1

A

D,/ (g-em™)

Absorption coefficient / mm™!
F(000)

6 range / (°)

GOF

R [I>20(1)]

wR," [I>20(1))

Final R, value (all data)
Final wR, value (all data)

4 4

1.302 1.419

0.655 0.819
1316.0 1120.0
3.737-30.439 3.618-30.224
1.039 1.008

0.036 3 0.0397
0.095 1 0.108 8
0.043 8 0.0532
0.098 5 0.1162

SR =S NF I S J: Y wR,=[ S w(F *=F 2 S w(F 2],

2 Results and discussion

2.1 Crystal structure of complexes 1 and 2

X - ray crystal structure analysis indicates that
complex 1 crystallizes in the monoclinic system with
the P2/c space group. The asymmetric unit consists of
one independent Ni(Il) ion, one complete deprotonated
HIPA* ligand, three halves of 2,5-DPBI, and one coor-
dinated water molecule (Fig. 1a). Additionally, some

disordered guest molecules in the asymmetric unit

(@

c21d €22/
N3d C19d gt

could not be further identified and their reflection data
are subtracted by SQUEEZE method from the corre-
sponding single crystal structure. As a result, two and a
quarter water molecules as guest molecules should
exist in an asymmetric unit according to the SQUEEZE
information. Ni(Il) ion adopts an octahedral configura-
tion to coordinate with three oxygen atoms from two car-
bonyl groups of HIPA* ions and one water molecule
and three imidazole nitrogen atoms from two 2,5-DPBI

molecules. Since complex 1 is constructed by two dis-

Ellipsoid probability level: 30%; Symmetry codes: a: x, 1=y, 0.5+z; b: 2—x, 2—y, 1=z; ¢: 1=x, y, 0.5-z; d: 1=x, y, 0.5~z

Fig.1 Schematic illustrations of 1: (a) coordination environments of Ni(ll) center; (b) 2,5-DPBI-Ni(Il) framework;

(c) 3D framework; (d) 5-connected net
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tinct ligands 2,5-DPBI and HIPA™, it is divided into
two parts according to ligand to simply its complicated
framework. If only 2,5-DPBI molecules and Ni(Il) cen-
ters are considered, a 3D 2,5-DPBI-Ni(Il) framework is
formed (Fig. 1b). In the 2,5-DPBI-Ni(Il) framework,
each Ni(Il) ion is connected by three 2,5-DPBI mole-
cules. Thus, the 2,5-DPBI-Ni(ll) framework can be
reduced into the 3-connected ths net with the topologi-
cal symbol of (10°). Different from the 3D framework
resulting from 2,5-DPBI and Ni(Il) centers, Ni(Il) ion
and HIPA™ ions can only form HIPA-Ni(Il) chain. The
HIPA-Ni(Il) chains are further filled in the 2,5-DPBI-
Ni () framework resulting in the final framework of
complex 1 (Fig. I¢). For the introduction of HIPA*
ligand, the whole framework of complex 1 is viewed as
a 5-connected net with a topological symbol of (4°.6°.8%)
(Fig.1d).

Complex 2 crystallizes in the monoclinic P2 /c
space group, and the asymmelric unit contains one

Ni (I) center, one deprotonated HIPA® anion, two

halves of 2,5-DPBMI, and one coordinated water mole-
cule. As shown in Fig.2a, the octahedral Ni(Il) center is
coordinated by three oxygen atoms from HIPA* anion,
two nitrogen atoms from 2,5-DPBMI, and one oxygen
atom from the water molecule. Based on such coordina-
tion mode, Ni(I) centers, HIPA* anion, and 2,5 -
DPBMI are further connected together to construct a
3D framework with nano - channels along the a - axis
(Fig.2b). The size of the honeycomb-like channel is up
to 1.5 nmX1.5 nm, where each layer of the channel is
comprised of six Ni(ll) centers, three HIPA* anions and
three 2,5 - DPBMI molecules. Structural interpenetra-
tion is inevitable in such an empty framework, and fur-
ther analysis reveals that the whole framework of com-
plex 2 is a threefold interpenetration structure (Fig.2c).
In the framework, each Ni(ll) center as a 4-connected
node is linked by two HIPA* anions and two 2,5 -
DPBMI molecules, while HIPA* and 2,5-DPBMI are
simple linker. Finally, the whole framework of complex

2 is a 4-connected dia net from the view of topology

Ellipsoid probability level: 30%; Symmetry codes: a: x, 0.5-y, =0.5+z; b: x, 0.5-y, 1.5+z; ¢: 1-«x, 2~y, 1=z; d: —x, 2~y, 1 -2

Fig.2 Schematic illustrations of 2: (a) coordination environments of Ni(ll) center; (b) empty 3D framework with nano-channels;

(c) 3-fold interpenetrating framework along the a-axis; (d) 4-connected dia net
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(Fig.2d). ples (Fig.3a). The PXRD also firm complexes 1 and 2

Complexes 1 and 2 were synthesized by the same
aromatic carboxylic acids and metal ions under similar
reaction conditions. Compared with 2,5 - DPBI, 2,5 -
DPBMI has two additional methyl groups in imidazole
units. Methyl groups increase the volume of the auxilia-
ry ligand and enhance the electron density of the N -
donor atom. Different volumes and electron densities
between 2,5-DPBI and 2,5-DPBMI bring about differ-
ent sterical effects and nucleophilic reactivity in the
reaction system. Effects from ligands lead to structural
diversities between complexes 1 and 2, playing a key
role in the synthetic processes.

2.2 PXRD and TG analysis

The PXRD experiments for complexes 1 and 2
were performed to check the phase purity of the bulk
materials. The PXRD patterns match well with the sim-

ulated ones, indicating the phase purities of the sam-

()
As-synthesized 2

Simulated 2

As-synthesized 1

Simulated 1

25 30
20/ ()

Weight / %

are very stable in a normal organic solvent, such as
methanol and ethanol. Moreover, after being soaked in
water under ultraviolet (UV) irradiation, PXRD results
show complexes 1 and 2 are still stable (Fig.S3, S4). To
further investigate their thermal stabilities, the TGA
experiments were carried out from room temperature
(25 C) to 800 °C under a nitrogen atmosphere (Fig.3b).
Complex 1 showed no obvious weight loss up to 230 °C,
and then the whole frameworks began to collapse over
230 °C. Complex 2 was stable in a temperature range of
25 to 170 °C, then a weight loss (3.23%) took place
between 170 and 220 °C, which is attributed to the
(Caled.
3.35%). As the temperature further increased, the

removal of coordinated water molecules

framework collapsed from 370 °C and sharp weight loss
continued to take place till the end of the TGA experi-

ment.

100

100 200 300 400 500

Temperature / C

Fig.3 PXRD patterns (a) and TGA curves (b) of complexes 1 and 2

2.3 Semi-conductive properties and photocatalytic

behaviors of complexes 1 and 2

Solid UV-Vis absorption tests reveal that complex
1 had two strong absorption bands in the regions of 200-
500 nm and 550-850 nm (Fig.4a). Solid UV-Vis absorp-
tion spectrum of complex 2 was similar to that of com-
plex 1, and the corresponding absorption bands located
in 200-450 nm and 500-800 nm (Fig.4b). The diffuse
reflection spectrum indicate that the bandgaps of com-
plexes 1 and 2 were about 1.52 and 1.40 eV according
to Kubelka-Munk method, respectively (Fig.S5, S6). To
further clarify their semiconducting characters, the

Mott - Schottky measurements were carried out at

frequencies of 1 500, 1 000, and 500 Hz, respectively.
The experimental results reveal that 1 and 2 are typical
n-type semiconductors, and their bottoms of the
conduction band (LUMO) are about —0.61 and -0.38
eV (vs NHE), respectively (Fig.4c, 4d). Furthermore,
the experimental curves from electrochemical imped-
ance spectroscopy (EIS) had a small radius, showing
that complexes 1 and 2 should possess low resistance
in charge transportation and high charge - separation
efficiency (Fig.5a, 5b).

Based on the above test results, complexes 1 and
2 should be candidate catalysts for some photocatalytic

reactions. Therefore, the photocatalytic experiments
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were performed and the experiments revealed that the
absorption peaks of MB obviously decreased under the
exposure of UV -visible light in the presence of 1 or 2
along with increasing reaction time (Fig.5c, 5d). The
calculation results show that the degradation ratio of
MB was 84% for 1 and 73% for 2 after three hours
(Fig.6). Furthermore, the blank degradation experiment
was also performed under UV irradiation without the
catalyst. Compared with the blank experiment, com-
plexes 1 and 2 had photocatalytic activity for the degra-
dation of MB. Besides, to evaluate the stability of com-
plexes 1 and 2 during the photocatalytic tests, recy-
cling experiments were carried out (Fig. S8). The
obtained results indicate that complexes 1 and 2 pre-
served their original catalytic activities after three reac-

tion cycles, showing only slight changes in degradation

efficiency.

1.0
0.8
0.6

<

®
04 .

—=— Without catalyst
F —®— Complex 1

ozl —A— Complex 2
0.0 n 1 L 1 n 1 " 1 " 1 n 1 n 1 n 1 1 ]

0 20 40 60 8 100 120 140 160 180

Trradiation time / min

Fig.6  Photocatalytic degradation of MB solution with

complexes 1, 2, and without the catalyst

3 Conclusions

In summary, two Ni - MOFs were synthesized
based on 5-(hydroxymethyl) isophthalic acid (H,HIPA)
and different imidazole bridging linkers. Their structures
exhibit different characteristics from a 5-connected
framework to a 3-fold interpenetrating dia net, which
reveals that bridging N-donor linkers have significant
effects on the H,HIPA coordination modes and the
final structures. Furthermore, the two complexes as typ-
ical n-type semiconductors are proved to be good candi-

dates for the photocatalytic degradation of MB.

Supporting information is available at http://www.wjhxxb.cn
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