MoS_2/Cd_2SnO_4 复合材料的制备及其气敏性能

卜鑫¹ 鲍思洁¹ 储向峰^{*,1} 梁士明^{*,2} 王春水¹ 白玉莹¹ (¹安徽工业大学化学与化工学院,马鞍山 243032) (²临沂大学材料科学与工程学院,临沂 276005)

摘要:采用水热-煅烧法制备Cd₂SnO₄,之后通过超声混合法得到一系列MoS₂/Cd₂SnO₄复合材料。采用X射线衍射、扫描电子显 微镜、X射线光电子能谱对Cd₂SnO₄和一系列MoS₂/Cd₂SnO₄复合材料进行结构和形貌的表征。研究了MoS₂掺杂量对于MoS₂/Cd₂SnO₄复合材料的气敏性能影响。实验结果表明,当MoS₂与Cd₂SnO₄的质量比为2.5%,MoS₂/Cd₂SnO₄复合材料制备的气敏元 件在170℃时对浓度为100 μ L·L⁻¹的甲醛气体的灵敏度为40.0,最低检测限为0.1 μ L·L⁻¹。

关键词: MoS₂/Cd₂SnO₄; 甲醛; 水热-煅烧法; 气敏性能
 中图分类号: 0614.121; 0614.37⁺¹
 文献标识码: A
 文章编号: 1001-4861(2022)11-2173-08
 DOI: 10.11862/CJIC.2022.209

Preparation and Gas-Sensing Properties of MoS₂/Cd₂SnO₄ Composite Materials

BU Xin¹ BAO Si-Jie¹ CHU Xiang-Feng^{*,1} LIANG Shi-Ming^{*,2} WANG Chun-Shui¹ BAI Yu-Ying¹ (¹School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China) (²School of Materials Science and Engineering, Linyi University, Linyi, Shandong 276005, China)

Abstract: Cd_2SnO_4 was prepared by hydrothermal-calcination method and a series of MoS_2/Cd_2SnO_4 composite materials were prepared by ultrasonic mixing method. To analyze the structures and morphologies of the Cd_2SnO_4 and MoS_2/Cd_2SnO_4 composite materials, X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy were used. The effect of the doped amount of MoS_2 on the gas sensing properties of MoS_2/Cd_2SnO_4 composite materials was investigated. The results showed that when the mass ratio of MoS_2 to Cd_2SnO_4 was 2.5%, the response of the gas sensor of MoS_2/Cd_2SnO_4 composite material to 100 μ L·L⁻¹ formaldehyde vapor at 170 °C was 40.0 and the detection limit reached 0.1 μ L·L⁻¹.

Keywords: MoS2/Cd2SnO4; formaldehyde; hydrothermal-calcination method; gas sensing properties

0 引 言

甲醛是常见室内污染气体之一,颜色透明且具 有刺激性气味。在2004年,甲醛被国际癌症研究机 构(IARC)认定为第一类人类致癌物^[1]。当人类在甲 醛浓度超过 0.08 µL·L⁻¹的室内环境中停留超过 30 min,甲醛气体会对人体的呼吸系统、肺部以及免疫 系统产生严重的损害^[23]。因此,对低浓度的甲醛进 行实时有效地监测具有重要意义。与半导体气体 传感器法相比较,目前常用来检测挥发性有机气体 的分光光度法^[4]、气相色谱法^[5]、电化学传感器法^[6]具 有操作复杂、成本高和不能实时监测等问题,这些 问题限制了这些检测方法在实际生活中的应用。 半导体气体传感器具有便携、操作简单以及检测成 本低等优点,被广泛地应用在气敏检测领域^[7,8]。Li 等^[9]使用水热法成功制备了NiO纳米线,其在200℃

收稿日期:2022-03-27。收修改稿日期:2022-07-15。 国家自然科学基金(No.61971003)资助。 *通信联系人。E-mail:maschem@sohu.com,lsmwind@163.com

报

对浓度为100 μL·L⁻¹的甲醛气体的灵敏度为12.0, 最低检测限仅为5 µL·L⁻¹。Meng等^[10]利用水热法成 功制备了具有空心微球结构的CuO材料,该材料在 300 ℃时对浓度为100 µL·L⁻¹的甲醛气体灵敏度为 3.2,最低检测限为5 μL·L⁻¹。Wang等^[11]采用溶液法 制备了中空管状Co₃O₄纳米材料,该材料在180℃时 对浓度为50 µL·L⁻¹的甲醛气体灵敏度为6.3,最低 检测限为5 μL·L⁻¹。虽然金属氧化物对于甲醛气体 都具有灵敏度,但是它们对于甲醛气体的最低检测 限都高于所允许的室内最高甲醛浓度。因此寻找 能够检测室内低浓度甲醛气体敏感材料是当前研 究的热点之一。近年来,多元氧化物因其优异的光 学和电学特性主要被应用于光催化、太阳能储能和 电化学领域[12-14],但作为半导体气体传感器的材料 也拥有一定的潜力。如Sa等^[15]采用微波加热法制 备了ZnSnO₄纳米材料,由气敏实验得该材料在最佳 工作温度为350 ℃时对浓度为100 µL·L⁻¹的三乙胺 气体的灵敏度为57.5,并且响应时间较短,仅有4s。 Wang 等^[16]利用了二嵌段共聚物模板法成功制备了 CdIn₂O₄薄膜,实验结果发现该材料在100℃时对浓 度为100 μL·L⁻¹的甲醛气体的灵敏度为16.0,最低 检测限为10 μL·L⁻¹。其中, Cd₂SnO₄作为一种特殊 的多元金属氧化物,拥有SnO,和CdO的优异特性, 如高电子迁移率(100 cm²·V⁻¹·s⁻¹)、低电阻率、热稳定 性好等,然而目前关于Cd,SnO₄材料在气体传感器 领域的文献报道较少。王彩虹等凹利用水热法制备 了Cd₂SnO₄材料,实验结果表明该材料在300℃时对 100 µL·L⁻¹的三乙胺、乙醇以及丙酮3种气体的灵敏 度分别为16.9、14.1和12.1,其中对三乙胺气体的最 低检测限为5 µL·L⁻¹。田丰收等^[18]通过水热法制备 了 Au-Cd₂SnO₄复合材料,在 240 ℃时其对 100 µL· L⁻¹丙酮气体灵敏度为75.0,相比纯Cd₂SnO₄材料的 灵敏度提升了8倍。上述多元金属材料作为气敏材 料拥有较高的灵敏度,但是仍然具有一定的提升空 间,使用二维材料对多元金属材料进行掺杂是提高 气敏性能的方法之一。

二硫化钼(MoS₂)作为一种典型的n型半导体二 维材料,具有比表面积大、电子迁移率高以及热稳 定性好等优点,被应用在发光二极管、储能器以及 半导体气体传感器等领域^[19-21]。研究者们发现, MoS₂材料的相邻平面是通过范德华力相互作用结 合在一起,弱的范德华力会使得气体分子在层与层 之间自由渗透和扩散,使MoS₂材料的电导率发生变 化,从而最终导致由单一 MoS_2 材料制成的气体传感 器的气敏性能不稳定^[22-23]。将适量的 MoS_2 与金属氧 化物进行复合,既可以改善单一 MoS_2 材料作为气体 敏感材料性能不稳定的情况,也可以获得更高的灵 敏度,在先前的文献中有报道。Ikram等^[24]利用声化 学和低温水热法制备了 In_2O_3 - MoS_2 复合材料,其在 室温下对于100 µL·L⁻¹的 NO_x的灵敏度为10.1,比纯 In_2O_3 材料的灵敏度相比提升了近5倍。Zhang等^[25] 使用两步水热法制备了 CeO_2 - MoS_2 复合材料,在室 温条件下其对浓度为50 µL·L⁻¹的乙醇气体的灵敏 度为7.9,比纯 MoS_2 材料的灵敏度提升近8倍。 Sharam等^[26]采用直流磁控溅射法成功制备了异质结 结构的 n- MoS_2 -p-CuO 纳米材料,实验结果表明 n- MoS_2 -p-CuO 对氨气的灵敏度是 MoS_2 材料灵敏度的2 倍,对氨气浓度的最低检测限可以达到5 µL·L⁻¹。

我们通过水热-煅烧法制备 Cd₂SnO₄,之后通过 超声混合法得到一系列 MoS₂/Cd₂SnO₄复合材料。随 后对纯 Cd₂SnO₄和一系列 MoS₂/Cd₂SnO₄复合材料分 别进行气敏性能测试,测试结果表明当工作温度为 170 ℃时, MoS₂对 Cd₂SnO₄质量比为 2.5% 的材料 (2.5% MoS₂/Cd₂SnO₄)对于 100 μ L·L⁻¹甲醛气体的灵 敏度为 40.0,是纯 Cd₂SnO₄材料灵敏度的 29 倍,最低 检测限为 0.1 μ L·L⁻¹。

1 实验部分

1.1 试 剂

实验过程中使用的化学试剂均为分析纯并且 在使用过程中没有进一步纯化。Cd₂(NO₃)₂·4H₂O购 自上海萨恩化学技术有限公司。SnCl₄·5H₂O购自上 海阿拉丁试剂有限公司。MoS₂分散液(0.1 mg·mL⁻¹) 购自南京先锋纳米材料科技有限公司。NaOH和无 水乙醇均购自国药集团化学试剂有限公司。实验 过程中使用的去离子水为实验室自制(实验室超纯 水机,上海和泰仪器有限公司)。

1.2 Cd,SnO₄材料的制备

称量 1.234 g的 Cd₂(NO₃)₂·4H₂O 和 0.720 g的 SnCl₄·5H₂O放入到烧杯中,然后加入 20 mL去离子水,磁力搅拌 2 h 得到均匀溶液,使用 2 mol·L⁻¹的 NaOH溶液将溶液的 pH 值调节为 9.5,然后将得到的悬浊液装入 50 mL水热釜中,使其在 170 ℃下保温 16 h。使用去离子水和无水乙醇将得到的产品分别洗涤 3次,之后放入 80 ℃的烘箱内干燥 12 h,研磨得到白色粉末。再将得到的白色粉末放入坩埚中,

放置在马弗炉中以5℃·min⁻¹的升温速率升至 550℃保温2h,得到黄色Cd₂SnO₄粉末。

1.3 MoS₂/Cd₂SnO₄复合材料的制备

量取质量浓度为 0.1 mg·mL^{-1} 的 MoS_2 分散液1、 1.5、2、2.5、3 mL,分别和称取的 $0.1 \text{ g } Cd_2SnO_4$ 粉末加 入到 50 mL的烧杯,并加入 25 mL的无水乙醇,搅拌 2 h,再进行超声处理 2 h。将超声结束的悬浊液放在 80 ℃的烘箱内烘干 12 h,得到 MoS_2/Cd_2SnO_4 复合材 料,根据 MoS_2 对 Cd_2SnO_4 的质量比,样品分别标记为 M/1(1% MoS_2/Cd_2SnO_4)、M/1.5(1.5% MoS_2/Cd_2SnO_4)、 M/2(2% MoS_2/Cd_2SnO_4)、M/2.5(2.5% MoS_2/Cd_2SnO_4)、 M/3(3% MoS_2/Cd_2SnO_4)。

1.4 表征仪器

采用 Bruker D8 Advance 型号的 X 射线衍射仪 (XRD)来分析材料的组成,辐射源 Cu Kα 的波长为 0.154 18 nm,扫描范围为 10°~80°,扫描速率为 15 (°)•min⁻¹,工作电压为 40 kV,工作电流为 30 mA。采用 Hitachi SU8010型扫描电镜(SEM)来研究材料的 表面形貌(加速电压为 15 kV)。采用 Thermo Scientific K-Alpha型X 射线光电子能谱仪(XPS)分析材料的元素组成(加速电压为 15 kV)。

1.5 半导体气敏元件制作和气敏性能实验

半导体气敏元件的制作和气敏性能实验与之前的实验工作相似^[27]。称取上述制备的 MoS₂/ Cd₂SnO₄复合材料粉末,于研钵中进行充分研磨。随 后加入适量的松节油透醇,将研磨好的浆状物均匀 涂抹在 Al₂O₃管的外壁上,然后将 Ni-Cr 加热丝穿插 在氧化铝管内,制成旁热式气敏元件。在实验过程 中,通过调节加热丝功率的大小,实现实验过程中 对元件工作温度的调控。气敏元件的灵敏度 S 的定 义^[28-29]: $S=R_a/R_a$,其中 R_a 是气敏元件在空气当中的稳 定电阻, R_a 是在被测气体中的稳定电阻。除研究相 对温度对气敏性能影响的实验外,实验过程中所有 测试材料的相对湿度(RH)都为55%。

2 结果与讨论

2.1 材料的表征

图 1 是 Cd₂SnO₄ 和 MoS₂/Cd₂SnO₄ 复合材料的 XRD 图,图中 Cd₂SnO₄ 衍射峰所对应的位置与 Cd₂SnO₄的标准卡(PDF No.80-1469)一致。其中位于 27.48°、32.48°、33.82°、39.25°、51.73°和56.72°处的 衍射峰与 Cd₂SnO₄晶体的(220)、(311)、(222)、(400)、 (511)和(440)晶面相对应,其中的(222)晶面归属于 Cd₂SnO₄的立方相^[30],证明Cd₂SnO₄材料的成功制备。 随着MoS₂复合量的不断增加,MoS₂/Cd₂SnO₄衍射峰 的强度呈现先减弱后增强的趋势,M/2的衍射峰最 弱,并且MoS₂/Cd₂SnO₄复合材料整体的衍射峰强度 都低于Cd₂SnO₄衍射峰。具有宽带隙的Cd₂SnO₄半 导体材料与其他材料复合会引起其内部的结晶度 发生变化,原因可能是二维材料MoS₂对于Cd₂SnO₄ 的晶体生长有一定的抑制作用,但是掺杂过量的 MoS₂就会出现相反的效果^[31-33]。

图 1 Cd₂SnO₄和 MoS₂/Cd₂SnO₄复合材料的 XRD 图 Fig.1 XRD patterns of Cd₂SnO₄ and MoS₂/Cd₂SnO₄ composite materials

为了研究和观测材料的形貌特征,对 Cd₂SnO₄ 和 M/2.5 复合材料进行了 SEM 分析。由图 2a 和 2b 中可以看到,Cd₂SnO₄是由具有立方体形貌的结构单 元无序堆积而成,而这些呈现立方体形貌的结构单 元则是由大量的颗粒有序堆积而成。图 2c 和 2d 中 出现了立方体形貌以及层状形貌,立方体形貌归属 于 Cd₂SnO₄,层状形貌则是 MoS₂,具有立方体形貌的 结构单元大小尺寸不同,都团聚在层状形貌的 MoS₂ 附近。图 2e~2i 为 M/2.5 的能量色散 X 射线谱(EDS) 元素分布图,从图中可以看出, M/2.5 中的 Cd、Sn、O、 Mo、S元素呈均匀分布。

通过 XPS 来分析 M/2.5 复合材料的元素组成。 图 3a 是 M/2.5 的 XPS 总谱图,由图可知,该材料是由 Cd、Sn、Mo、S和O元素组成。图 3b 是 Mo3d 的谱图, 图中结合能 227.93 和 232.29 eV 处分别对应 Mo⁴⁺3d_{5/2} 和 Mo⁴⁺3d_{3/2}, 2 个峰之间的能量差为 4.36 eV,和文献 提到的带隙能一致,表明了 Mo 以+4 价的形式存 在^[24]。图 3c 中 Cd3d 自旋-轨道分量峰分别位于 404.25和411.70 eV,分别对应Cd3d_{5/2}和Cd3d_{3/2}。此 外,图3d中出现的485.80和494.41 eV的2个峰对应 着Sn3d_{5/2}和Sn3d_{3/2},表明Sn在复合材料中是以+4价 存在^[12]。图3e显示的是M/2.5的O1s的3个峰,分别 对应于复合材料表面的3种不同的氧离子,位于 529.56和530.14 eV的2个峰对应于材料表面的晶 格氧O²⁻和吸附氧O⁻,位于531.26 eV的峰对应羟基 氧^[34]。图 3f 是 Cd₂SnO₄的 O1s 谱图,通过拟合可得 529.42 eV 对应材料表面的晶格氧,530.17 eV 对应 材料表面的吸附氧,而 531.28 eV 对应的是羟基氧。 因此, M/2.5 的 O1s 中的晶格氧、吸附氧和羟基氧的 特征峰相比于 Cd₂SnO₄的 O1s 特征峰发生了轻微的 偏移^[35]。

图 2 Cd₂SnO₄ (a、b)和 M/2.5 (c、d)的 SEM 照片以及 M/2.5 的 EDS 元素分布图 (e~i) Fig.2 SEM images of Cd₂SnO₄ (a, b) and M/2.5 (c, d), and EDS elemental mapping of M/2.5 (e-i)

图 3 M/2.5 的 XPS 谱图: (a) 全谱, (b) Mo3d, (c) Cd3d, (d) Sn3d, (e) O1s; (f) Cd₂SnO₄的 O1s 的 XPS 谱图 Fig.3 XPS spectra of M/2.5: (a) survey, (b) Mo3d, (c) Cd3d, (d) Sn3d, (e) O1s; (f) XPS spectrum of O1s of Cd₂SnO₄

2.2 材料的气敏分析

图 4 是 Cd₂SnO₄和 MoS₂/Cd₂SnO₄复合材料(M/1、 M/1.5、M/2、M/2.5、M/3)在不同工作温度下对于 100 μ L·L⁻¹甲醛气体的灵敏度。当工作温度高于 170 ℃ 时, M/2.5 对 100 μ L·L⁻¹甲醛气体的灵敏度开始随着 温度的升高而降低,说明该复合材料的最佳工作温 度为 170 ℃。当工作温度为 170 ℃时, Cd₂SnO₄和 M/1、M/1.5、M/2、M/2.5、M/3 复合材料对于 100 μ L· L⁻¹甲醛气体的灵敏度分别为 1.4、1.4、5.0、40.0、1.1、 1.5,说明适量的 MoS₂与 Cd₂SnO₄进行复合可以获得 更高的灵敏度,可能原因是 MoS₂与 Cd₂SnO₄纳米结 构的协同效应^[36],较大的比表面积和层状结构提供 了大量的活性位点从而导致了显著的甲醛传感 性能。

- 图4 Cd₂SnO₄和 MoS₂/Cd₂SnO₄复合材料(M/1、M/1.5、 M/2、M/2.5、M/3)在不同工作温度下对 100 μL・ L⁻¹甲醛气体的灵敏度
- Fig.4 Responses of Cd_2SnO_4 and MoS_2/Cd_2SnO_4 composite materials (M/1, M/1.5, M/2, M/2.5, M/3) to 100 μ L· L⁻¹ formaldehyde vapor at different operating temperatures

图 5 给出了 M/2.5 复合材料在 170 ℃下对于 100 μL·L⁻¹的异丙醇、丙酮、甲醇、甲醛、三甲胺、乙醇、乙 醛、乙酸气体的灵敏度,分别为 4.0、1.4、1.1、40.0、 2.2、1.0、1.0、1.0,这表明 M/2.5 在 170 ℃的时候对于 100 μL·L⁻¹的甲醛显示出较好的灵敏度。M/2.5 对 于除甲醛之外的其他气体的灵敏度都低于 5,表明 M/2.5 对于甲醛拥有优异的选择性。

图 6是 M/2.5 复合材料在 170 ℃的工作温度下 对不同浓度甲醛的响应/恢复曲线图。从图中可知, 随着浓度降低, M/2.5 材料对于甲醛气体的灵敏度也 在降低。M/2.5 对浓度为 100、50、20、10、1、0.1 μL·

- 图 5 不同工作温度下 M/2.5 对八种 100 μL·L⁻¹气体的 灵敏度
- Fig.5 Responses of M/2.5 to eight kinds of gases (100 $\mu L \cdot L^{-1}$) at different operating temperatures

图 6 M/2.5 在 170 ℃的工作温度下对不同浓度甲醛 气体的响应/恢复曲线

L⁻¹甲醛的灵敏度分别为40.0、18.8、10.5、3.3、3.0和 1.3。因此, M/2.5 对于甲醛浓度的最低检测限为0.1 μL·L⁻¹, 灵敏度为1.3。此外, M/2.5 对于100 μL·L⁻¹ 甲醛的响应时间为37 s, 恢复时间为7 s。

图7是由 M/2.5复合材料制备的气敏元件在不同浓度甲醛气体中的电阻随时间的变化曲线。可以发现,随着甲醛浓度的不断降低,由 M/2.5制备的气敏元件的电阻最小值也随着降低。气敏元件对于不同浓度的甲醛气体的电阻响应/恢复曲线与M/2.5对于不同浓度的甲醛气体的灵敏度的响应/恢复曲线趋势保持一致。

RH通常会对材料的气敏性能产生影响。图8

图 7 由 M/2.5 制备的气敏元件在 170 ℃的工作温度下 对不同浓度甲醛气体的电阻响应/恢复曲线

Fig.7 Response/recovery curve of resistance of gas sensor prepared by M/2.5 to formaldehyde vapor with different concentrations at the operating temperature of 170 ℃

是 M/2.5 复合材料在不同 RH的条件下对于 100 μL· L⁻¹甲醛气体的灵敏度。当 RH 慢慢增加到 55% 时, M/2.5 对于 100 μL·L⁻¹甲醛气体灵敏度也在慢慢升 高,最大灵敏度为 40.0(RH=55%)。灵敏度随着 RH 增加而增加,可能原因是在 RH 为 15%~55% 之间 时, M/2.5 表面刚开始是水分子的物理吸附占据主导 地位。这里的物理吸附呈现出的是一种多层的现 象,水的初始物理吸附的固定层是由具有双氢键的 单个分子组成,单个分子之间进行单键结合形成物 理吸附层,随着 RH 的不断增加,物理吸附层数也在 不断地增加,水层中的质子可能可以像在纯水中一 样容易移动,因而 M/2.5 的电导率在增加^[37]。当 RH 在 55%~90% 之间时,随着 RH继续增加, M/2.5 对于

图 8 RH对 M/2.5 在 170 ℃时检测 100 μL·L⁻¹甲醛气体 的影响

100 μL·L⁻¹甲醛气体的灵敏度呈现下降趋势,这可 能是因为材料表面的水分子堆叠过多会占据材料 表面的活性吸附点,从而钝化材料表面的反应,抑 制了 M/2.5 气敏反应的进行^[35-38]。

2.3 气敏机理研究

报

目前对于半导体气体传感器的气敏现象,可以 使用表面吸附控制理论来解释^[3940]。当MoS₂/ Cd₂SnO₄复合材料的气敏元件暴露在空气中时,氧气 分子会吸附在复合材料的表面形成吸附态O₂(式1), 然后O₂会从MoS₂/Cd₂SnO₄复合材料的导带中获得电 子变成吸附态的O₂⁻(式2)和吸附态O⁻(式3),使得 MoS₂/Cd₂SnO₄复合材料表面的导带电子减少,材料 的导电性能降低,电阻上升。当MoS₂/Cd₂SnO₄复合 材料的气敏元件的表面与甲醛气体接触时,材料表 面的化学吸附氧O₂⁻会与甲醛分子发生氧化反应,反 应生成二氧化碳和水(式4)。反应的过程中会将电 子释放回导带增加电子的电导率,从而增强材料的 导电性能,电阻降低。具体的反应过程如下:

$O_2(gas) \rightarrow O_2(ads)$	(1)
$O_2(ads)+e^- \rightarrow O_2^-(ads)$	(2)
$O_2^{-}(ads)$ +e ⁻ → 2O ⁻ (ads) (100 °C ≤ T ≤ 150 °C)	(3)
$\rm HCHO+20^- \rightarrow \rm CO_2+\rm H_2O+2e^-$	(4)

3 结 论

采用水热-煅烧法制备 Cd_2SnO_4 ,之后通过超声 混合法得到一系列 MoS_2/Cd_2SnO_4 复合材料。然后对 Cd_2SnO_4 以及一系列 MoS_2/Cd_2SnO_4 复合材料进行了 气敏性能的实验。实验结果表明,在170 ℃的工作 温度时, $M/2.5(MoS_2 与 Cd_2SnO_4$ 的质量比为 2.5%)对 100 μ L·L⁻¹的甲醛气体的灵敏度达到 40.0,是纯 Cd_2SnO_4 对相同浓度甲醛气体灵敏度的 29 倍。此 外, M/2.5 对于甲醛的最低检测限为 0.1 μ L·L⁻¹。因 此,掺杂适量的 MoS_2 有利于提升 Cd_2SnO_4 材料对甲 醛气体的气敏性能,该复合材料具有应用于检测室 内甲醛气体的潜力。

参考文献:

- [1]Cogliano V J, Grosse Y, Baan R A, Straif K, Secretan M B, Ghissassi F E. Meeting Report: Summary of IARC Monographs on Formaldehyde, 2-Butoxyethanol, and 1-tert-Butoxy-2-propanol. Environ. Health Perspect., 2005,113(9):1205-1208
- [2]Nielsen G D, Larsen S T, Wolkoff P. Re-evaluation of the WHO (2010) Formaldehyde Indoor Air Quality Guideline for Cancer Risk

- [3]Zhang H M, Zheng Z, Yu T, Liu C, Qian H, Li J G. Seasonal and Diurnal Patterns of Outdoor Formaldehyde and Impacts on Indoor Environments and Health. *Environ. Res.*, 2022,205:112550
- [4]Wei K, Ma L, Ma G, Ji C D, Yin M Z. A Two-Step Responsive Colorimetric Probe for Fast Detection of Formaldehyde in Weakly Acidic Environment. *Dyes Pigment.*, 2019,165:294-300
- [5]Sun M S, Wang F M, Liu W, Cai W F, Zhang X B. Novel Application of Gas Chromatography in Measurement of Gas Flow Rate. *Flow Meas. Instrum.*, 2016,50:245-251
- [6]Shimomura T, Itoh T, Sumiya T, Mizukami F, Ono M. Electrochemical Biosensor for the Detection of Formaldehyde Based on Enzyme Immobilization in Mesoporous Silica Materials. Sens. Actuators B - Chem., 2008,135:268-275
- [7]Yuan Z Y, Yang C, Meng F L. Strategies for Improving the Sensing Performance of Semiconductor Gas Sensors for High - Performance Formaldehyde Detection: A Review. *Chemosensors*, 2021,9(7):179
- [8]Umar A, Ibrahim A A, Nakate U T, Albargi H, Alsaiari M A, Ahmed F, Alharthi F A, Alghamdi A A, Al-Zaqri N. Fabrication and Characterization of CuO Nanoplates Based Sensor Device for Ethanol Gas Sensing Application. *Chem. Phys. Lett.*, **2021**,**763**:138204

[9]Li Z W. Supersensitive and Superselective Formaldehyde Gas Sensor Based on NiO Nanowires. Vacuum, 2017,143:50-53

- [10]Meng D, Liu D Y, Wang G S, San X G, Shen Y B, Jin Q, Meng F L. CuO Hollow Microspheres Self-Assembled with Nanobars: Synthesis and Their Sensing Properties to Formaldehyde. *Vacuum*, 2017, 144: 272-280
- [11]Wang S M, Xiao C H, Wang P, Li Z F, Xiao B X, Zhao R, Yang T Y, Zhang M Z. Co₃O₄ Hollow Nanotubes: Facile Synthesis and Gas Sensing Properties. *Mater. Lett.*, **2014**,**137**(15):289-292
- [12]Bel-Hadi-Tahar R. Structural and Electro-Optical Properties of Sol-Gel Processed Cd₂SnO₄ Powder and Nanocrystalline Films. *Thin Solid Films*, **2017**,**626**:85-93
- [13]Wu X, Asher S, Levi D H, King D E, Yan Y, Gessert T A, Sheldon P. Interdiffusion of CdS and Zn₂SnO₄ Layers and Its Application in CdS/CdTe Polycrystalline Thin - Film Solar Cells. J. Appl. Phys., 2001,89:4564-4569
- [14]Coutts T J, Young D L, Li X, Mulligan W P, Wu X. Search for Improved Transparent Conducting Oxides: A Fundamental Investigation of CdO, Cd₂SnO₄, and Zn₂SnO₄. J. Vac. Sci. Technol. A, 2000,18: 2646-2660
- [15]Sá B, Zito C, Perfecto T, Volanti D. Porous ZnSnO₃ Nanocubes as a Triethylamine Sensor. Sens. Actuators B-Chem., 2021,338:129869
- [16]Wang Z D, Zou T, Xing X X, Zhao R J, Wang Z Z, Yang Y, Wang Y D. CdIn₂O₄ Nanoporous Thin Film Gas Sensor for Formaldehyde Detection. *Physica E*, **2018**,**103**:18-24
- [17]王彩虹,刘国霞,阴军英.Cd₂SnO₄水热制备及其气敏性能研究. 化工新型材料, **2012,40**(6):108-110
 - WANG C H, LIU G X, YIN J Y. Preparation by Hydrothermal Method and Gas Sensing Properties of Cd₂SnO₄. New Chemical Materials, 2012,40(6):108-110

- [18]田丰收, 刘艳丽. 纳米 Au修饰 Cd₂SnO₄复合材料的制备与气敏性 能研究. 化学传感器, **2019**, **39**(2):42-47
 - TIAN F S, LIU Y L. Preparation and Gas Sensing Properties of Nano-Au Modified Cd₂SnO₄ Composites. *Chemical Sensors*, **2019**,**39**(2):42-47
- [19]Yu L M, Guo F, Liu S, Qi J L, Yin M L, Yang B, Liu Z Y, Fan X H. Hierarchical 3D Flower-like MoS₂ Spheres: Post-thermal Treatment in Vacuum and Their NO₂ Sensing Properties. *Mater. Lett.*, **2016**, **183**:122-126
- [20]Kim Y, Kang S, Oh N, Lee H, Lee S, Park J, Kim H. Improved Sensitivity in Schottky Contacted Two-Dimensional MoS₂ Gas Sensor. ACS Appl. Mater. Interfaces, 2019,11:38902-38909
- [21]Choi G J, Le Q V, Choi K S, Kwon K C, Jang H W, Gwag J S, Kim S Y. Polarized Light Emitting Diodes Based on Patterned MoS₂ Nanosheet Hole Transport Layer. Adv. Mater., 2017,29:1702598
- [22]Koh E W K, Chiu C H, Lim Y K, Zhang Y W, Pan H. Hydrogen Adsorption on and Diffusion through MoS₂ Monolayer: First-Principles Study. Int. J. Hydrog. Energy, 2012,37:14323-14328
- [23]Yue Q, Shao Z Z, Chang S L, Li J B. Adsorption of Gas Molecules on Monolayer MoS₂ and Effect of Applied Electric Field. *Nanoscale Res. Lett.*, 2013,8:425
- [24]Ikram M, Liu Y, Lv H, Liu L J, Rehman A U, Kan K, Zhang W J, He L, Wang Y, Wang R H, Shi K Y. 3D-Multilayer MoS₂ Nanosheets Vertically Grown on Highly Mesoporous Cubic In₂O₃ for High-Performance Gas Sensing at Room Temperature. *Appl. Surf. Sci.*, 2019,466:1-11
- [25]Zhang J H, Li T T, Guo J Y, Hu Y Q, Zhang D Z. Two-Step Hydrothermal Fabrication of CeO₂-Loaded MoS₂ Nanoflowers for Ethanol Gas Sensing Application. *Appl. Surf. Sci.*, 2021,568:150942
- [26]Sharma S, Kumar A, Singh N, Kaur D. Excellent Room Temperature Ammonia Gas Sensing Properties of n-MoS₂/p-CuO Heterojunction Nanoworms. Sens. Actuators B-Chem., 2018,275:499-507
- [27]焦成,蒋余芳,文会荣,储向峰,梁士明.片状 CdGa₂O₄纳米材料 的制备及其甲醛气敏性能.稀有金属材料与エ程,2021,50(9): 3335-3341
- JIAO C, JIANG Y F, WEN H R, CHU X F, LIANG S M. Preparation of Flake CdGa₂O₄ Nanomaterials and Their Formaldehyde Gas-Sensitive Properties. *Rare Metal Mat. Eng.*, **2021**,**50**(9):3335-3341
- [28]Gao X, Zhang T. An Overview: Facet-Dependent Metal Oxide Semiconductor Gas Sensors. Sens. Actuators B-Chem., 2018,277:604-633
- [29]Yuan Z, Zhao Q N, Xie C Y, Liang J G, Duan X H, Duan Z H, Li S R, Jiang Y D, Tai H L. Gold Loaded Tellurium Nanobelts Gas Sensors for ppt Level NO₂ Detection at Room Temperature. Sens. Actuators B-Chem., 2022,355:131300
- [30]AI-Sofiany S M, Hassan H E. Radiation Treatment of Cd₂SnO₄ Thin Films Prepared by RF Sputtering with Different Preparation Conditions. J. Alloy. Compd., 2015,651:149-156
- [31]Kumaravel R, Ramamurthi K. Structural. Optical and Electrical Properties of In - Doped Cd₂SnO₄ Thin Films by Spray Pyrolysis Method. J. Alloy. Compd., 2011,509:4390-4393
- [32]Chen P Y, Xu W S, Gao Y K, Warner J H, Castell M R. Epitaxial

Assessment. Arch. Toxicol., 2017,91(1):35-61

报

Growth of Monolayer MoS₂ on SrTiO₃ Single Crystal Substrates for Application in Nanoelectronics. *ACS Appl. Energy Mater.*, **2018**,**11**:1-51

- [33]Ikram M, Liu L J, Liu Y, Ullah M, Ma L F, Bakhtiar S H B, Wu H Y, Yu H T, Wang R H, Shi K Y. Controllable Synthesis of MoS₂@MoO₂ Nanonetworks for Enhanced NO₂ Room Temperature Sensing in Air. Nanoscale, 2019,11:8554
- [34]吴海燕,干正强,储向峰,梁士明,何利芳.一维Ga₂O₃/SnO₂纳米 纤维的制备及其气敏性能.无机化学学报,2020,36(2):309-316
 WUHY, GANZQ, CHUXF, LIANGSM, HELF. Preparation and Gas-Sensing Properties of One-Dimensional Ga₂O₃/SnO₂ Nanofibers. *Chinese J. Inorg. Chem.*, 2020,36(2):309-316
- [35]Sui N, Zhang P, Zhou T T, Zhang T. Selective ppb-Level Ozone Gas Sensor Based on Hierarchical Branch - like In₂O₃ Nanostructure. Sens. Actuators B-Chem., 2021,336:129612

[36]Zhao J P, Yuan Z Y, Ji H Y, Zhang H, Meng F L, Gao H L. Highly

Sensitive Ethanol Sensor Based on Two-Dimensional Layered Mesoporous In₂O₃ Nanosheets. *IEEE Trans. Nanotechnol.*, **2020**, **9**:486-491

- [37]Afsar M F, Rafiq M A, Tok A I Y, Li C, Cheng B W, Xu X L. Humidity and Selective Oxygen Detection by Ag₂S Nanoparticles Gas Sensor. J. Mater. Sci. Mater. Electron., 2019,30:10117-10127
- [38]Ma Y T, Ma S Y, Tang J, Wu Z G, Shi J, Zhao Y, Wang Y, Pei S T. Constructed Heterostructured SnS@MoO₃ Hollow Nanotubes and Detected Sensing Properties towards TEA. Vacuum, 2021, 184: 109939
- [39]Li X, Zhang Y, Bhattacharya A, Chu X F, Liang S M, Zeng D W. The Formaldehyde Sensing Properties of CdGa₂O₄ Prepared by Coprecipitation Method. Sens. Actuators B-Chem., 2021,343:129834
- [40]Zhou T T, Zhang T. Recent Progress of Nanostructured Sensing Materials from 0D to 3D: Overview of Structure-Property-Application Relationship for Gas Sensors. Small Methods, 2021,5(9):2100515