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(Fig. 3A) and C—H…H interactions with 0.245 nm
along the c ‑ axis (Fig. 3C) occur in the supramolecular
Pd parallelogram complex 2a crystal. These data imply
that the hydrogen hexafluorophosphate anion plays a
crucial role in the growth of these supramolecular Pd
parallelogram crystals.
2.3 Selective detection of HSO3

-

Fig.S20 shows that the ligands and supramolecu‑
lar Pd parallelograms had similar absorption peaks
because they have the same aromatic structures in the
supramolecular assembly. The absorption peak at 310
nm is the characteristic absorption peak of benzene. It
was redshifted upon adding HSO3- to complex 1a. In
complex 2a, tailing absorption bands at 360, 379 and
400 nm appeared due to the fingerprint peaks of the
anthracene units (Fig. S21B). Upon adding HSO3- to
complex 2a, the absorption bands were blueshifted.
The fluorescence response of supramolecular Pd paral‑
lelograms on HSO3- was investigated in DMSO ‑ H2O
mixtures with 50% water fraction at an excitation wave‑
length of 320 nm (Fig. 4A and 4B). Fig. 4A and 4B
reveal that fluorescence was enhanced upon adding

HSO3- in the 0 ‑ 100 µmol·L-1 concentration range.
Unlike the fluorescence titration spectra of complex
2a, the fluorescence spectra of complex 1a exhibited a
shoulder peak at 500 nm upon adding HSO3- (Fig.4A).
Thus, the fluorescence of secondary assembly 1a in fil‑
ter paper was turquoise after titration of HSO3-
(Fig.4E). However, after treating the strip with different
anion solutions, the fluorescence of the other anions
did not change under 365 nm ultraviolet excitation. In
addition, the fluorescence intensity was linearly related
to HSO3- concentration in a range of 30‑80 µmol·L-1,
indicating that complex 1a is suitable for quantitatively
detecting HSO3- ions. The detection limit was calculated
using the formula 3σ/k, where σ is the standard devia‑
tion of ten blank samples and k is the slope of the linear‑
fitting plot. It was 0.131 µmol·L-1 in a mixture of
DMSO and water with a water fraction of 50% (Fig.
S22). We also investigated the fluorescence response of
complex 1a at concentrations of 10 µmol·L-1 to the oth‑
er anions (20 times the amount of the anion). Fig. 4C
shows that bisulphite exhibited the most significant flu‑
orescence enhancement among the common anions.

Fig.3 Molecular packing of complex 2a along the a‑axis (A), b‑axis (B) and c‑axis (C) in the single‑crystal state
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The I- and NO2- species also showed fluorescence
enhancement in a range of 350‑600 nm, but the inten‑
sity of the enhanced fluorescence emission caused by
I- and NO2- was only a quarter of that of HSO3-. The flu‑
orescence of the other 12 anions did not change signifi‑
cantly (Fig. 4C). Fig. 4D shows that several potential
interfering substances, such as CN- , CO32- , Cl- , SO42- ,
SO32- , NO2- , NO3- , HPO42- , H2PO4- , F- , PO42- , Br- , I- ,

HSO4- , did not affect the fluorescence response of 1a,
thus confirming that the fluorescence sensor detects
HSO3- in water with high selectivity even in the pres‑
ence of competing anions. Similarly, the complex ‑2a ‑
based sensor was robust against interference in aque‑
ous solution (Fig.S23).
2.4 Dissociative mechanism

To further investigate the detection mechanism of

Fig.4 Fluorescence spectra of complexes 1a (A) and 2a (B) sensors with increasing HSO3- concentration; (C) Selectivity of
1a in DMSO‑H2O mixtures with a water fraction of 50% towards HSO3- and other anions (c=10 µmol·L-1);
(D) Photoluminescence intensity of 1a in a solution of DMSO‑H2O mixtures treated with different anions (red) and
the anions with HSO3- (yellow); (E) Fluorescence of 1a in test strip treated with different anions and illuminated by
an ultraviolet lamp (365 nm)
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HSO3- , 1H NMR titration experiments were conducted.
The proposed reaction mechanism is illustrated in
Fig.5A and S24. When excessive HSO3- salt was added
to the DMSO ‑ d6 solution of the metallacycles, a new
signal peak was generated, reminiscent of the free
ligand HL1 region. This result indicates that metallacy‑
cles can dissociate and release free ligands (Fig. 5B).

The 1H NMR spectra also indicate that ligand HL1
binds a proton, resulting in an obvious fluorescence
enhancement due to suppressed photoinduced electron
transfer. In addition, HSO3- is a better receptor for
[Pd2(bpy)2(NO3)2] (NO3)2, leading to the formation of
Pd(bpy)(SO3)2[28].

Fig.5 (A) Proposed disassembly mechanism of complex 1a with HSO3-; (B) Partial 1H NMR spectra (400 MHz, DMSO‑d6)
of ligands HL1, [Pd2(bpy)2(NO3)2](NO3)2, complex 1a and bipyridine upon the addition of excess of HSO3-

3 Conclusions

In summary, two metal ‑ organic supramolecular
metallacycles based on dipalladium corners were syn‑
thesised. SCXRD shows that these metallacycles con‑
tain aryl pyrazole pyridine as linkers and Pd metal vec‑
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tors as corners. Metallacycles 1a and 2a can be used as
fluorescence turn‑on sensors for detecting HSO3- with a
low detection limit of 0.131 µmol·L-1. More important‑
ly, these metal complexes can selectively and sensitive‑
ly detect HSO3- without interference from other ions.
1H NMR titration experiments prove that upon adding
HSO3- , the metallacycles can dissociate and release
free ligands. The findings provide new insights into the
development of metal ‑ organic supramolecular sensors
that exploit the stimulus ‑ response destruction mecha‑
nisms of these metallacycles.

Supporting information is available at http://www.wjhxxb.cn
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