Color Tuning of Iridium Complexes by Using Conjugative Effect of Pyridine-derived Cyclometalated Ligands

WU Chen XUE Li-Sha Li Tian-Yi ZHANG Song ZHENG You-Xuan*

(State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of

Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China)

Note: Wu and Xue are co-first authors.

1. ESI-MS spectra of ligands

- 1.1. npy
- 1.2. pnpy
- 1.3. Htpip
- 2. MALDI-TOF spectra of complexes
 - 2.1 Ir(ppy)₂tpip
 - 2.2 Ir(npy)₂tpip
 - 2.3. Ir(pnpy)₂tpip
- 3. H NMR spectra of ligands and complexes
 - 3.1 npy
 - **3.2 pnpy**
 - 3.3 Ir(ppy)₂tpip
 - 3.4 Ir(npy)₂tpip
 - 3.5 Ir(pnpy)₂tpip
- 4. Table S1 Parameters associated with the crystal diffraction data collection for Ir(ppy)₂tpip.
- 5. Table S2 Selected bond lengths(Å) and angles(deg) for $Ir(ppy)_2tpip$
- 6. TG-DSC curves of complexes
 - 3.1 Ir(ppy)₂tpip
 - 3.2 Ir(npy)₂tpip
 - 3.3 Ir(pnpy)₂tpip

1. ESI-MS spectra of ligands

1.1. npy

Fig. S1. The ESI-MS spectrum of npy.

1.2. pnpy

Fig. S2. The ESI-MS spectrum of pnpy.

1.3. Htpip

Fig. S3. The ESI-MS spectrum of Htpip.

2. MALDI-TOF spectra of complexes

2.1 Ir(ppy)₂tpip

Fig. S4. The MALDI-TOF spectrum of $Ir(ppy)_2 tpip$.

2.2 Ir(npy)₂tpip

Fig. S5. The MALDI-TOF spectrum of Ir(npy)₂tpip.

2.3. Ir(pnpy)₂tpip

Fig. S6. The MALDI-TOF spectrum of Ir(pnpy)₂tpip.

3. H NMR spectra of ligands and complexes

3.1 npy

Fig. S7. The H NMR spectrum of npy.

3.2 pnpy

Fig. S8. The H NMR spectrum of pnpy.

3.3 Ir(ppy)₂tpip

Fig. S9. The H NMR spectrum of Ir(ppy)₂tpip.

3.4 Ir(npy)₂tpip

Fig. S10. The H NMR spectrum of Ir(npy)₂tpip.

3.5 Ir(pnpy)₂tpip

Fig. S11. The H NMR spectrum of Ir(pnpy)₂tpip.

	Ir(ppy) ₂ tpip
Formula	$C_{46}H_{36}IrN_3O_2P_2$
FW	916.94
T (K)	296(2)
Wavelength (Å)	0.71073
Cryst syst	Monoclinic
Space group	P2(1)/c
a (Å)	15.5516(12)
b (Å)	11.1611(9)
<i>c</i> (Å)	23.4952(18)
α (deg)	90.00
β (deg)	106.5230(10)
γ (deg)	90.00
$V(\text{\AA}^3)$	3909.7(5)
Ζ	4
$\rho_{calcd} (g/cm^3)$	1.558
μ (Mo K α) (mm ⁻¹)	3.539
F (000)	1824
Range of transm factors (deg)	1.37-28.28
Reflns collected	27514
Unique	9697
Data/restraints/params	9697/0/487
GOF on F^2	1.000
R_1^{a}, wR_2^{b} (I>2 σ (I))	0.0383,0.0766
R_1^{a} , wR_2^{b} (all data)	0.0561,0.0801
CCDC NO.	966232

4. Table S1 1 Parameters associated with the crystal diffraction data collection for Ir(ppy)₂tpip.

 $R_I^a = \Sigma ||F_o| - |F_c|| / \Sigma F_o|$

 $wR_2^{\ b} = [\Sigma w(F_o^2 - F_c^2)^2 / \Sigma w(F_o^2)]^{1/2}$

8 ()	8 8 117/211
Ir(1)-C(46)	1.992(4)
Ir(1)-N(2)	2.030(4)
Ir(1)-C(35)	1.989(4)
Ir(1)-O(1)	2.219(2)
Ir(1)-N(3)	2.029(3)
Ir(1)-O(2)	2.199(3)
C(46)-Ir(1)-C(35)	92.17(17)
C(46)-Ir(1)-N(2)	98.66(17)
C(46)-Ir(1)-O(1)	92.00(14)
C(46)-Ir(1)-N(3)	80.81(17)
C(46)-Ir(1)-O(2)	170.53(16)
C(35)-Ir(1)-N(2)	80.72(15)
C(35)-Ir(1)-O(1)	172.73(14)
C(35)-Ir(1)-N(3)	98.06(15)
C(35)-Ir(1)-O(2)	87.74(14)
N(3)-Ir(1)-N(2)	178.67(12)
N(3)-Ir(1)-O(1)	88.49(12)
N(2)-Ir(1)-O(1)	92.76(12)
N(3)-Ir(1)-O(2)	89.83(13)
N(2)-Ir(1)-O(2)	90.67(12)
O(1)-Ir(1)-O(2)	89.13(10)

5. Table S2 Selected bond lengths (Å) and angles(deg) for $Ir(ppy)_2tpip$

6. TG-DSC curves of complexes

6.1 Ir(ppy)₂tpip

Fig. S12. The TG-DSC curves of Ir(ppy)₂tpip.

Fig. S13. The TG-DSC curves of Ir(npy)₂tpip.

6.3 Ir(pnpy)₂tpip

Fig. S14. The TG-DSC curves of Ir(pnpy)₂tpip.