二茂铁β-双酮锌配合物的合成、电化学活性及多光子吸收

解清园 | 李丹 | 李丹丹 | 李胜利 | 吴杰颖 | 张琼*1.2 田玉鹏*1.2 (安徽大学功能无机材料化学安徽省重点实验室,合肥,230601) (南京大学配位化学国家重点实验室,南京,210023)

*通讯联系人: zhangqiong.314@163.com, yptian@ahu.edu.cn

非线性光学计算公式	3
图 S1 [L-H] ⁻ 的 MALDI-TOF 谱	4
图 S2 L 的 ¹ H-NMR 谱	4
图 S3 (NHEt3)(ZnL3)的 ¹ H-NMR 谱	5
图 S4 L 的红外光谱	5
图 S5 (NHEt3)(ZnL3)的红外光谱	6
图 S6 L, (NHEt3)(ZnL3)在六种溶剂中的紫外-可见吸收光谱	7
附表 S1 L 和(NHEt3)(ZnL3)的晶体数据	6
附表 S2 L 和(NHEt3)(ZnL3)在六种溶剂中的吸收波长	7

非线性光学计算公式

双光子吸收截面由下列公式得到:

$$I(L) = \frac{I_0 e^{-\alpha_0 L}}{1 + (1 - e^{-\alpha_0 L}) \frac{\beta}{\alpha_0} I_0}; \quad \sigma_2 = \frac{h v \beta}{N_A d} \times 10^3;$$

其中 I₀为入射光强; I(L)为出射光强; L 为样品池厚度; α₀是介质在弱入射光强下的线 性吸收系数; β为双光子吸收系数, v 是入射光的频率, h 为普朗克常数 (6.626×10⁻³⁴ J·s), N_A是阿伏伽德罗常数(6.022×10²³ mol⁻¹), d 是样品的浓度。

三光子吸收截面由下列公式计算得到:

$$\gamma = \frac{\frac{I_0^2}{I^2} \cdot 1}{2 \times L \times I_0^2}; \quad \sigma_3 = \frac{\gamma}{N_A \times d_0 \times 10^{-3}} \cdot (\frac{hc}{\lambda})^2$$

其中 I₀是光功率密度,I是入射光强,L是样品池厚度,γ是三光子吸收系数,d₀是样品 浓度,λ是波长,h是普朗克常数(6.626×10⁻³⁴ J·s),N_A是阿伏伽德罗常数(6.022×10²³ mol⁻¹)。 三阶非线性极化率χ⁽³⁾,用到如下方程^[3]:

$$\Delta T_{PV} = 0.406(1-S)^{0.25} |\Delta \Phi|$$
$$\Delta \Phi = KL_{eff} \gamma I_0$$

其中, Δ Tpv 为透射曲线峰谷差, Δ Φ为非线性相移, $L_{eff} = [1 - \exp(1 - \alpha L)]/\alpha$,

为样品有效厚度(α 是样品的线性吸收系数), I_0 为焦点处光功率密度, $k = 2\pi/\lambda$ 为光在真空中的传播常数, s为小孔光阑的线性透光率, γ 为样品的非线性折射率。

对于三阶非线性极化率的求得,可依据下列公式:

$$\begin{aligned} R_{\rm e} \chi^{(3)} &= 10^{-4} n_0 \varepsilon_0 c^2 \beta \lambda / 4\pi^2 \\ I_m \chi^{(3)} &= 10^{-2} n_0^2 \varepsilon_0 c^2 \beta \lambda / 4\pi^2 \\ \chi^{(3)} &= \sqrt{(R_e \chi^{(3)})^2 + (I_m \chi^{(3)})^2} \end{aligned}$$

其中 n₀为溶剂线性折射率,本试验溶剂为 CH₃CN, n₀=1.343, ε₀是真空中介电常数, 为 8.8542×10⁻¹² F·m⁻¹, c 为真空中光速,为 3×10⁸ m·s⁻¹,β为开孔的双光子吸收系数。

图 S3 (NHEt₃)(ZnL₃)的 ¹H-NMR 谱 Fig. S3 ¹H-NMR spectrum of (NHEt₃)(ZnL₃)

图 S4 L 的红外光谱

Fig.S4 Infrared spectrum of L

Fig.S5 Infrared spectrum of (NHEt₃)(ZnL₃)

Comp.	L	(NHEt ₃)(ZnL ₃)
Empirical formula	$C_{14}H_{11}F_3FeO_2$	C48H46F9Fe3NO6Zn
CCDC	2070926	2070927
Formula weight	324.08	1136.80
Temperature	296.15	296.15
Space group	Pī	$P2_1/n$
a/nm	0.59975(19)	1.23636(2)
b/nm	1.0271(3)	1.95531(3)
c/nm	2.1096(7)	1.97055(4)
V/nm ³	1.2994(7)	4.76369(14)
Ζ	4	4
D calcd [Mg·m ⁻³]	1.656	1.585
μ [mm ⁻¹]	1.193	8.490
F (000)	656.0	2312.0

附表 S1 L 和(NHEt₃)(ZnL₃)的晶体数据 Table S2 Crystal data for L and (NHEt₃)(ZnL₃)

2θ range / (°)	1.93-54.424	8.46-139.436
Reflections collected	10193	35452
Independent reflections	5195 (R _{int} =0.0860)	8748 (Rint=0.0320)
Data/restraints/parameters	5195/187/425	8748/9/616
Final R indices $[I \ge 2\sigma(I)]^*$	$R_1=0.0475$, $wR_2=0.1057$	$R_1=0.0645$, $wR_2=0.1638$
R indices (all data)	$R_1=0.0852$, $wR_2=0.1221$	R ₁ =0.0862, wR ₂ =0.1790
Goodness-of-fit on F ²	0.961	1.078

 $R_1 = \sum (||F_o| - |F_c||) / \sum |F_o|, wR_2 = [\sum w(F_o^2 - Fc^2)^2 / \sum w(F_o^2)]^{1/2}.$

图 S4 L, (NHEt₃)(ZnL₃)在不同溶剂中的紫外-可见吸收光谱(a):L; (b):(NHEt₃)(ZnL₃)(浓度:1.0×10⁻⁵ mol·L⁻¹)

Fig. S4 UV-*vis* absorption spectra of L, (NHEt₃)(ZnL₃) in different solvents (a):L; (b): (NHEt₃)(ZnL₃) (concentration : 1.0×10^{-5} mol·L⁻¹)

		H ₂ O	EtOH	МеОН	C ₆ H ₆	CH ₂ Cl ₂	DMSO
	L	300.8	317.2	319.6	324.2	339.8	373.4
λ/nm	(NHEt ₃)	202.2	215 4	221.0	326.0	329.4	274.9
	(ZnL ₃)	303.2	315.4	321.0	510.6	513.2	5/4.8

|--|

Table S1 Absorption wavelengths of L and (NHEt₃)(ZnL₃) in different solvents

 λ : UV-visible absorption wavelength