纳米氧化铪的制备与热膨胀性

孙静 1,2 李强 1,2 林鲲 1,2 刘占宁 1,2 邢献然 1,2
(1 北京材料基因工程高精尖创新中心,北京 100083)
(2 北京科技大学固体化学研究所,北京 100083)

摘要：制备了尺寸为 4 nm 的 HfO₂纳米颗粒，并借助X射线原子对分布函数方法，研究了尺寸约 4 nm 和体相 HfO₂颗粒的晶格热膨胀。结果表明,在纳米尺度的HfO₂中,晶格沿a,c轴的热膨胀性增大,b轴热膨胀性稍微减小,体积热膨胀性增大。同时纳米 HfO₂晶格热膨胀的各向异性比体相大。该现象是由于尺寸效应导致结构畸变变大,尤其是次近邻 Hf-O-Hf 键角减小,随后升温过程中该畸变发生热池豫趋向恢复至平衡位置导致的。

关键词：氧化铪；纳米；热膨胀；原子对分布函数

DOI: 10.11862/CJIC.2019.249

Synthesis and Thermal Expansion in Nanosized Hafnium Oxide

SUN Jing,1,2 LI Qiang,1,2 LIN Kun,1,2 LIU Zhan-Ning,1,2 XING Xian-Ran,1,2
(Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing 100083, China)
(Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: HfO₂ nanoparticles with size of 4 nm were prepared through solvothermal process, and the lattice thermal expansion of nano and bulk HfO₂ was studied by X-ray atom pair distribution function (PDF) method. The results showed that in nanoscale HfO₂, the lattice thermal expansion along a and c axis increased, while b axis slightly decreased, and eventually volumetric thermal expansion increased. Meanwhile, the anisotropy of the thermal expansion of the nanosized HfO₂ is larger than that of the bulk. The origin was that size effect induced a large structural distortion, mainly the reduction of the next nearest neighbor Hf-O-Hf bond angle, and then heating process triggered the relaxation of the distortion to equilibrium position.

Keywords: hafnium oxide; nanoparticles; thermal expansion; pair distribution function

0 引言

氧化铪(HfO₂)作为一种高介电常数和宽带隙的材料，由于具有适宜的电能偏移和优良的界面性能，成为可用于取代晶体管中 SiO₂的栅极介质的替换材料14。氧化铪基薄膜从 20 世纪 90 年代至今一直是信息技术相关领域研究的重点24。例如在集成电路中金属氧化物半导体场效应晶体管(MOSFET)的栅介质256,以及动态随机存储器(DRAM)的电容介质等7。随着微电子器件的不断微型化和集成化，其尺寸在不断减小，体相材料已经无法满足人们的要求。由于晶体管特征尺寸的迅速缩小，SiO₂受摩尔定律的限制泄漏电流急剧增大，急需高 k 电介质以取代栅极相关应用中的 SiO₂80。并且自从纳米氧化铪于 2008 年第一次被英特尔公司用于 45 nm 处理器金
属-氧化物-半导体场效应晶体管栅介质后，氧化铪基纳米材料的商业应用前景也充满活力。

我们知道电子元器件在服役环境内，环境温度会出现较大差异。同时器件自身的温度热效应也会造成器件局部的强烈热振，电子器件温度带温度带来的热膨胀作用使得器件不同部分产生变形，当器件组元的热膨胀系数相差较大时，甚至可能有开裂或碎片部件分离的现象发生。如何避免热膨胀失效是器件应用过程中需要重点关注的问题。

本文通过变温同步辐射X射线粉末衍射和X射线原子对分布函数(pair distribution function, PDF)研究了氧化铪纳米颗粒的晶体结构及在可能的服役温度范围内的热膨胀行为。与体相比较，纳米化的HfO₂颗粒由于表面应力的原因晶体结构发生一定程度的畸变，进而改变了晶体的热膨胀行为。对于纳米化HfO₂颗粒的热膨胀的深入研究及其局部结构信息的揭示，将为HfO₂基电子元器件的设计提供重要的结构基础。

1 实验部分

1.1 试剂

试剂HfCl₄(98%),乙酸(99%),苯甲醇(98%),KOH(98%),HfO₂(98%)均购自Alfa Aesar。

1.2 样品制备

HfO₂纳米颗粒是根据Pinna⑥的方法进行改进而合成的。将1gHfCl₄加入225mL苯甲醇中，搅拌50min使其成为均匀的悬浊液，然后加入到500mL聚四氟乙烯受热釜中，将容器置于恒温鼓风干燥箱中在220℃反应48h。待自然冷却后，采用乙醇离心清洗3~5次除去苯甲醇溶剂。洗净的纳米粉末在干燥箱中80℃下加热3h干燥，干燥后的样品放入马弗炉中在500℃煅烧1h，除去表面的有机物。对于体相HfO₂，将样品放入马弗炉中在1000℃煅烧5h，使颗粒充分长大。

1.3 仪器与表征

采用日本JEOL JEM-2010透射电子显微镜(加速电压200KV)观察样品形貌和结构。样品制样方法为，取少量HfO₂纳米颗粒分散在乙醇中，超声3min后取分散有HfO₂纳米颗粒的乙醇溶液滴于覆有碳膜的铜网上，测试中使用明场像模式，采用美国Varian Excalibur 3100傅里叶变换红外光谱仪采集样品的红外光谱。合成样品的相结构通过X射线粉末衍射确定，在日本Spring-8同步辐射光源的BL44B2线站上采用X射线能量是24.75keV，X射线波长为0.0500nm，光子通量是10⁷s⁻¹，单色器是Si(111)，使用探测器是MYTHEN DECTRIS Ltd，角度分辨率为0.005°，角度采集范围为5°~15°。X射线原子对分布函数(PDF)在美国阿贡国家实验室先进光源(Advanced Photon Source, APS)的11-ID-B线站上采集获取，X射线能量是58.66keV，X射线波长为0.0211nm，光子通量是2.3×10⁶s⁻¹，单色器是Si(311)，使用探测器是Vares 4343CT，衍射结构函数的傅里叶变换采用PDFgetX3软件获得，倒空间Q值取到2.5nm⁻¹，进一步数据分析采用PDFgui软件进行。

2 结果与讨论

2.1 形貌和尺寸分析

图1是HfO₂纳米颗粒的透射电镜(TEM)图。图1(a)是大视野的图片，图1(b)是局部照片。从图中可
知，HFO
纳米颗粒的尺寸分布比较均匀，约为4 nm，但是并不具有规整的形状。这是由于在合成过程中爆
发式的形核发生后纳米晶的生长受到反应物浓度大
幅降低的限制，纳米晶很难获得同化学成键相匹
配的生长速度，从而使其形貌不具规整的形状[9]。
该结果其实是纳米晶周围的动力学条件所决定的。
图1(b)中的插图是HFO
纳米晶的高分辨透射图
片 (HRTEM)，从图上的清晰晶格条纹可知尽管HFO
纳米颗粒的粒径很小但依然结晶性很好。

2.2 相成分分析

HFO
在常温至1 700 ℃温度范围内具有稳定的
单斜相[9]。图2是合成的样品的高分辨同步辐射X
射线粉末衍射图 (synchrotron X-ray powder diffrac-
tion, SPD)，对比标准卡片 (ICSD No.27313) 可以看出
HFO
样品均为单斜相。纳米样品由于尺寸效应的原
因，衍射峰具有本征的形状和重叠。同时比较相
对峰强与峰的宽化程度可以发现，各个衍射峰的宽
化很一致，各个衍射峰的宽化一致，各向异性宽和择优取向可以忽略。

2.3 表面状态分析

在纳米颗粒合成过程中，表面包覆剂与颗粒表
面容易产生化学键合作用，因而会影响纳米颗粒的
物理化学性能。为了消除表面包覆剂对样品的影响，
我们通过氧气气氛下烧结使有机物质充分挥发氧化
来获得表面干净的颗粒。利用傅里叶变换红外光谱
can see the formation of the dumbbell-shaped structure.

2.4 热膨胀性能

为了得到HFO
样品的热膨胀数据，需要获得不同温度下HFO
样品的晶格参数。然而，纳米HFO
颗粒由于晶体长程周期性被破坏，衍射峰具有显著
的宽化，甚至高角度峰的高度重叠 (图2)，使得
Rietveld 精修过程中对峰位置的判断以及其面积
的计算出现难以避免的系统误差，进而会引起原子
坐标和温度因子等提取结果的错误。而X 射线全散
射技术结合了局域周期性平均结构的布拉格衍射和
局域结构的弹性漫散射两种信息，从而弥补了布拉
格衍射在局域尺度上的缺失[23]。采用X 射线全散
射信息提取出原子对分布函数可获取更详细而准
确的纳米材料的结构信息。所以，HFO
样品的晶格
参数通过进行X 射线原子对分布函数数据的精修来
获得。

图4是HFO
体相和纳米样品的PDF 演。由图
can see a clear and narrow peak at 1.613 Å which is
attributed to the (111) plane of the crystal structure.

2.5 其他性能分析

除了上述性能外，HFO
还表现出良好的热
稳定性、化学稳定性以及电化学性能。在高温
条件下，HFO
保持其结构稳定，具有优异的耐热
性和抗腐蚀性。在化学反应中，HFO
作为催化剂
表现出极佳的催化活性和选择性，可以有效促进
各种化学反应的进行。在电化学领域，HFO
作
为电极材料在电池中表现出卓越的电化学性能，
如高能量密度和长循环寿命。这些性能的综
合，使得HFO
在许多高科技领域具有广阔的应用前景。
粒外的一致性降低，因而 PDF 峰强在实空间沿径向衰减较快。尽管峰强差异很大，峰的位置与峰型依然较一致，这也说明了纳米和体相样品相结构一致，均为单斜相，没有出现相变。

利用 PDFgui 对实空间 4 nm 以下的原子对分布函数进行晶体结构的拟合。拟合时采用的初始结构是单斜相 (ICSD No. 27313)，空间群是 P21/c。从拟合的结果来看，纳米样品的 Rw 值为 0.11，体相样品的 Rw 值为 0.08，计算与实验数据吻合程度均很好，纳米和体相 HfO2 的晶体结构可以很好地用单斜来描述，这点从图 4 中 G_{af} 图线也可以看得出来。

通过拟合原位变温 PDF 数据，两组样品的本征热膨胀性能被提取出来，见表 1。测试温度范围是 -100 到 200 °C，涵盖了 HfO2 作为电子元器件材料服役温度的极限情况。从表 1 中数据可知，随着颗粒尺寸的减小，HfO2 的单胞参数 b, c 收缩，b 轴角减小而 b 增大，导致单胞呈现一个趋向高温稳定相四方相的变化。有实验证明，当材料尺寸足够小时，由于外应力的增加使得材料的高温相在低温时能稳定存在[24]。因此该变化可认为是由于尺寸减小后表面应力的增加造成的。体相 HfO2 的品格热膨胀显示出较好的各向异性[35~38]，a, c 轴随温度增大而呈现出正膨胀行为，b 轴正膨胀较小。纳米化后其各向异性的特性增强，从表 2 数据可知，a, c 轴的热膨胀性随晶粒尺寸的减小而增加，b 轴热膨胀性稍微减小，最后导致体积的热膨胀性增大，如图 5 所示。

表 2 HfO2 样品的热膨胀系数

<table>
<thead>
<tr>
<th>Sample</th>
<th>a / °C</th>
<th>b / °C</th>
<th>c / °C</th>
<th>V / °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk</td>
<td>5.85x10^{-6}</td>
<td>1.68x10^{-6}</td>
<td>7.38x10^{-6}</td>
<td>15.9x10^{-6}</td>
</tr>
<tr>
<td>Nano</td>
<td>6.27x10^{-6}</td>
<td>1.25x10^{-6}</td>
<td>9.46x10^{-6}</td>
<td>17.5x10^{-6}</td>
</tr>
</tbody>
</table>

图 4 HfO2 样品 PDF 的拟合结果

图 5 HfO2 样品的单胞体积随温度的变化

为了更好地理解 HfO2 尺寸减小后热膨胀性变化，其详细结构信息通过 PDF 被提取出来。主要变化源自于通过顶点连接的 2 个 HfO2 多面体之间的 Hf-O-Hf 键角的改变。如图 6 所示，纳米化后多面体延 b 轴逆时针旋转，使得 Hf-O-Hf 键角从 147.5° 减小至 145.4°，该变化可以在 PDF (如图 7) 中 Hf-Hf 原子对分布函数中观察到，图中左边的峰对应 HI-HF 最近邻原子对，体相和纳米样品的峰位几乎不变，这说明通过边对边连接的 HfO2 多面体约束性较大，不易受尺寸的影响。右边的峰对应于 HF-HF 近邻原子对，即通过顶点连接的 HfO2 多面体中的 Hf 原子间距，纳米化后该峰左移，即 HF-HF 近邻原子对距离减小，也验证了 Hi-O-Hf 键角减小的情况。

键角的减小使单胞在 a, c 轴方向上被压缩，b
与体相材料比较，纳米 HfO$_2$ 沿 a, c 轴的热膨胀性增大，b 轴热膨胀性稍减小，总的结果是体积的热膨胀性增大。进一步结构分析表明尺寸效应使纳米 HfO$_2$ 晶体结构中 Hf-O-Hf 次近邻键角减小，导致单一沿 a, c 轴方向上被压缩，b 轴方向上被拉伸。升温过程中该高应力状态逐渐被原子热振动的加剧而弛豫释放因而呈现出与体相相比增加的趋势。该低工作为改善纳米 HfO$_2$ 器件的耐热冲击性能等有关物性提供了重要的结构支撑。

参考文献：