双吡啶化合物 3，7－di（3－pyridyl）－1，5－dioxa－3，7－diazacyclooctane构建的四个过渡金属配合物的合成，结构及热稳定性

李 理
（苏州科技大学化学与生命科学学院，苏州 215009）

Abstract

摘要：采用准刚性的双吡啶化合物3，7－di（3－pyridyl）－1，5－dioxa－3，7－diazacyclooctane（L），合成了 4 个过渡金属配合物 $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{~L})_{2}\right] \mathrm{NO}_{3}(\mathbf{1}), ~\left[\mathrm{Co}_{2} \mathrm{Cl}_{4}(\mathrm{~L})_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl} \mathrm{l}_{2}(\mathbf{2}), ~\left[\mathrm{Cd}_{2}(\mathrm{AcO})_{4}(\mathrm{~L})_{2}\right] \cdot 4 \mathrm{CH}_{3} \mathrm{OH}(\mathbf{3})$ 和 $\left[\mathrm{Cd}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{~L})_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathbf{4})$ 。单晶衍射分析表明，配合物 $\mathbf{1}$ 是单核结构，配合物 $\mathbf{2}$ 是 24 －元环状双核结构，而配合物 $\mathbf{3}$ 和 $\mathbf{4}$ 为多边形双核结构。在这些配合物中，双昆啶配体分别采用了单齿，trans－和 cis－桥连 3 种不同配位方式。配合物经过了元素分析，红外，热重和 X 射线单晶结构分析表征。

关键词：钴；镉；3，7－di（3－pyridyl）－1，5－dioxa－3，7－diazacyclooctane；双吡啶；晶体结构
中图分类号：0614．24＋2；0614．81＋2 文献标识码：A 文章编号：1001－4861（2021）01－0121－10
DOI：10．11862／CJIC．2021．009

Preparation，Structures and Thermal Stabilities of Four Transition Metal Complexes Constructed by 3，7－Di（3－pyridyl）－1，5－dioxa－3，7－diazacyclooctane Bipyridine Ligand

LI Li
（School of Chemistry and Life Sciences，Suzhou University of Science and Technology，Suzhou，Jiangsu 215009，China）

Abstract

Four transition metal complexes，$\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{~L})_{2}\right] \mathrm{NO}_{3}(\mathbf{1}),\left[\mathrm{Co}_{2} \mathrm{Cl}_{4}(\mathrm{~L})_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathbf{2}),\left[\mathrm{Cd}(\mathrm{AcO})_{4}(\mathrm{~L})_{2}\right] \cdot$ $4 \mathrm{CH}_{3} \mathrm{OH}(3)$ and $\left[\mathrm{Cd}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{~L})_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(4)$ ，were synthesized by employing a clamplike bipyri－ dine ligand 3，7－di（3－pyridyl）－1，5－dioxa－3，7－diazacyclooctane（L）．Single－crystal X－ray analysis reveals that complex $\mathbf{1}$ is mononuclear structure； $\mathbf{2}$ is macrocyclic dimer；wheras $\mathbf{3}$ and $\mathbf{4}$ are rectangular dinuclear structures．The ligand molecules in these complexes has shown three types of coordination mode including mono－dentate，trans－bridge and cis－bridge．All of the complexes were also characterized by elemental analysis，IR，thermal stabilities and single－ crystal structure analysis．CCDC：940778，1；915840，2；1446573，3；1446574， 4.

Keywords：cobalt；cadmium；3，7－di（3－pyridyl）－1，5－dioxa－3，7－diazacyclooctane；bipyridine；crystal structure

0 Introduction

Pyridine ligands have been employed extensively in constructing functional materials with transition met－ $\mathrm{a}^{[1-13]}$ ．They have shown many advantages containing appropriate coordination capability，uncharged proper－ ty，easy structural design as well as versatile coordina－ tion mode．N, N^{\prime}－bidentate bipyridine has drawn much
attention during these decades．Those ligands with larg－ er spacer have been used to construct porous metallocy－ clic architectures，metal－organic frameworks（MOFs）， optical complexes and so on，such as bis（4－（pyridine－4－ yl）phenyl）amine ${ }^{[3]}, N, N^{\prime}-(1,2$－phenylene）diisonicotin－ amide ${ }^{[4]}, 3$－bis（4－pyridyl）propane ${ }^{[7]}, 1,2$－dimethoxy－4，5－ bis（2－pyridylethynyl）benzene ${ }^{[8]}, 1,8$－bis（4－pyridylethy－ nyl）anthracene ${ }^{[9]}$ ，（（pyridinyl）－1H－pyrazolyl）pyridine ${ }^{[10]}$ ，

[^0]4，6－bis（ 4^{\prime}－pyridylsulfide）dibenzofuran ${ }^{[11]}$ ，4，6－bis（meth－ ylsulfanylmethyl）dibenzofuran ${ }^{[11]}, 1,1^{\prime}$－bis（4－pyridyl） ferrocene ${ }^{[13]}$ and the others ${ }^{[14-16]}$ ．To date，most of those ligands are flexible．

In our previous research，a clamplike bipyridine ligand 3，7－di（3－pyridyl）－1，5－dioxa－3，7－diazacyclooc－ tane（L）has been synthesized．We have measured the ${ }^{1} \mathrm{H}$ NMR spectra of L in CDCl_{3} in a range of -10 to $50{ }^{\circ} \mathrm{C}$ ．Along with the change of temperature，the rota－ tion of the N－C bonds accompany with alternate between ＂up，up＂and＂down，down＂conformations in ligand would take place．The bipyridine ligand has shown qua－ sirigid characteristics under room temperature．During the coordinating with copper salts，it acted as a cis－bridge ligand ${ }^{[17]}$ ．Herein，as part of continuing stud－ ies on its coordination chemistry，we have built four transition metal complexes $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{~L})_{2}\right] \mathrm{NO}_{3}(\mathbf{1})$ ， $\left[\mathrm{Co}_{2} \mathrm{Cl}_{4}(\mathrm{~L})_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathbf{2}),\left[\mathrm{Cd}_{2}(\mathrm{AcO})_{4}(\mathrm{~L})_{2}\right] \cdot 4 \mathrm{CH}_{3} \mathrm{OH}(\mathbf{3})$ and $\quad\left[\mathrm{Cd}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{~L})_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad$（4）． They have shown diverse coordination chemistry．X－ray single－crystal structure analysis displays that $\mathbf{1}$ is a mononuclear complex，while 2～4 are dinuclear com－ plexes．The ligand molecule in these complexes has exhibited three types of coordination mode including mono－dentate，trans－bridge and cis－bridge．All of these complexes have been characterized by elemental analy－ sis，IR spectra，thermal gravity analysis and X－ray sin－ gle－crystal structure analysis．The intra－／inter－molecu－ lar hydrogen interactions of these complexes have also been discussed．

1 Experimental

1．1 Reagents and instruments

The ligand L has been prepared and characterized previously ${ }^{[17]}$ ．Other reagents were purchased from com－ mercial sources and used as received without further purification．Carbon，hydrogen and nitrogen analysis were carried out by direct combustion on an EA1110－ CHNSO elemental analyzer．FT－IR spectra were recorded on a Perkin Elmer Spectrum BX II spectrom－ eter．Thermal stability analysis was measured on a PRT －1A Thermogravimetric Analyzer．Powder X－ray diffrac－ tion（PXRD）determination was performed on an X－ray
diffractometer（X＇Pert PRO MPOCPW 3040／60，Pana－ lytical）with $\mathrm{Cu} K \alpha$ radiation（ $\lambda=0.15406 \mathrm{~nm}$ ）．The operating voltage and current were 40 kV and 40 mA ， and the measurement was carried out over a 2θ range of 5° to 50° in continuous scanning mode．

1．2 Preparation of complexes $\mathbf{1 \sim 4}$

Complex 1：To a Pyrex tube（ 6 mm inner diame－ ter）was added $5.0 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ solution of $\mathrm{L}(1.0 \mathrm{mmol}$ ， 290 mg ），then was slowly layed onto 5.0 mL CH 3 OH solution of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 291 \mathrm{mg})$ ．The tube was sealed at room temperature for 4 d ，and red block crystals of complex 1 were afforded．Yield： 481 $\mathrm{mg}\left(63 \%\right.$ based on Co）．Anal．Calcd．for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{CoN}_{10} \mathrm{O}_{12}$ （\％）：C 44．04，H 4．75，N 18．34；Found（\％）：C 44．12，H 4．68，N 18．15．FT－IR（KBr， cm^{-1} ）： 3 412（m）， 3 042（w）， 2 963（w）， 2 935（w）， 2 902（w）， 1 602（w）， 1 578（m）， 1522 （s）， $1496(\mathrm{vs}), 1464(\mathrm{w}), 1443(\mathrm{w}), 1426(\mathrm{w}), 1369(\mathrm{vs})$ ， $1309(\mathrm{~s}), 1261(\mathrm{~s}), 1229(\mathrm{vs}), 1$ 193（m）， 1 167（w）， 1136 （s）， $1058(\mathrm{~s}), 1029(\mathrm{vs}), 1015(\mathrm{~s}), 991(\mathrm{~s}), 942(\mathrm{~m}), 888$ （m），828（w），799（m），781（w），745（w），696（m），665（m）， 621（w），569（w），487（w），416（w）．

Complex 2：To a Pyrex tube was added 5.0 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathrm{L}(1.0 \mathrm{mmol}, 290 \mathrm{mg})$ ，then was slowly layed onto 5.0 mL CH 3 CN solution of $\mathrm{CoCl}_{2}(1.0$ $\mathrm{mmol}, 130 \mathrm{mg})$ ．The tube was sealed at room tempera－ ture for 6 d ，and blue block crystals of complex 2 were afforded．Yield： 231 mg （ 52% based on Co）．Anal． Calcd．for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{Cl}_{6} \mathrm{Co}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}(\%)$ ：C 39．17，H 3．85， N 12．60；Found（\％）：C 40．12，H 3．97，N 12．95．FT－IR （ $\mathrm{KBr}, \mathrm{cm}^{-1}$ ）： 3 413（w）， 3 112（w）， 3 077（w）， 3 048（w）， 2 980（w）， 2 940（w）， 2 903（w）， 1 600（s）， 1 577（s）， 1495 （vs）， 1 438（s）， 1 368（vs）， 1 305（s）， 1 258（m）， 1 223（s）， 1 197（m）， 1 171（w）， 1 136（s）， $1063(\mathrm{~s}), 1038(\mathrm{vs}), 1015$ （s），991（s），944（s），889（m），807（s），730（m），692（s）， 663 （s），620（w），568（w），496（w），419（w）．

Complex 3：It was prepared as the method for com－ plexes $\mathbf{1}$ and 2 except that $5.0 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{OH}$ solution of $\mathrm{Cd}(\mathrm{AcO})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 267 \mathrm{mg})$ was used．The tube was sealed at room temperature for 5 d ，and color－ less block crystals of complex 3 were afforded．Yield： $329 \mathrm{mg}(58 \%$ based on Cd）．Anal．Calcd．for $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{Cd}_{2} \mathrm{~N}_{8} \mathrm{O}_{16}(\%)$ ：C 42．37，H 5．33，N 9．88；Found （\％）：C 42．12，H 5．08，N 9．70．FT－IR（KBr， cm^{-1} ）： 3440
（vs）， 2 967（w）， $2963(\mathrm{w}), 2933(\mathrm{w}), 1$ 560（vs）， $1498(\mathrm{~s})$ ， 1 420（s）， 1 364（s）， 1 306（s）， 1 261（m）， 1 231（s）， 1199 （w）， 1 166（w）， 1 134（s）， $1063(\mathrm{~s}), 1033(\mathrm{vs}), 1016(\mathrm{~s})$ ， 995（s），942（s），876（m），803（m），790（w），697（m）， 670 （m），），642（w），620（w）．

Complex 4：It was prepared the method for 1～3 except that 5.0 mL CH 33 solution of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ $(1.0 \mathrm{mmol}, 308 \mathrm{mg})$ was used．After one week，colorless block crystals of complex $\mathbf{4}$ were afforded．Yield： 830 $\mathrm{mg}\left(72 \%\right.$ based on Cd）．Anal．Calcd．for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{Cd}_{2} \mathrm{~N}_{12} \mathrm{O}_{22}$ （\％）：C 31．23，H 4．19，N 14．57；Found（\％）：C 31．12，H 4．02，N 14．30．FT－IR（KBr， cm^{-1} ）： 3 450（vs）， 2 901（w）， 1 602（m）， 1 498（m）， 1 384（vs）， 1 305（s）， 1 261（m）， 1 233（s）， 1 198（m）， 1 167（w）， 1 135（m）， 1 062（m）， 1033 （s），997（m），942（m），900（w），881（w），799（m），692（m）， 641（w）．

1．3 Crystallographic analyses

The single crystals with dimensions of $0.50 \mathrm{~mm} \times$ $0.40 \mathrm{~mm} \times 0.35 \mathrm{~mm}(\mathbf{1}), 0.25 \mathrm{~mm} \times 0.22 \mathrm{~mm} \times 0.20 \mathrm{~mm}$ （2）， $0.35 \mathrm{~mm} \times 0.25 \mathrm{~mm} \times 0.22 \mathrm{~mm}(\mathbf{3})$ and $0.40 \mathrm{~mm} \times$ $0.20 \mathrm{~mm} \times 0.20 \mathrm{~mm}(4)$ were mounted on a glass fiber， relatively．Single－crystal X－ray diffraction measure－
ments were performed on a Bruker APEX II 4K CCD area detector equipped with a graphite monochromated Mo $K \alpha$ radiation（ $\lambda=0.071073 \mathrm{~nm}$ ）by using the ω－ scan mode on all observed reflections in a θ range of $3.06^{\circ} \sim 25.35^{\circ}$（1）， $3.07^{\circ} \sim 26.00^{\circ}$（2）， $3.05^{\circ} \sim 25.02^{\circ}$（3） and $3.16^{\circ} \sim 24.24^{\circ}(4)$ ．All absorption corrections were applied using the SADABS program ${ }^{[18]}$ ．The structures were solved by direct methods and refined on F^{2} by full －matrix least－squares using the SHELXTL－97 program package ${ }^{[19]}$ ．Metal atoms were located from the e－maps， and other non－hydrogen atoms were derived from the successive difference Fourier peaks．The nitrate anion was disordered about a twofold rotation axis in complex $4^{[20]}$ ．Hydrogen atoms were placed in geometrically ide－ alized positions（ $\mathrm{C}-\mathrm{H} 0.095 \sim 0.098 \mathrm{~nm}$ ）and were con－ strained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 \sim$ $1.5 U_{\text {eq }}(\mathrm{C})$ ．Summary of the crystallographic data for $\mathbf{1 \sim 4}$ are given in Table 1．Selected bond lengths and angles are given in Table 2．Hydrogen bonds geometries are listed in Table 3.

CCDC：940778，1；915840，2；1446573，3； 1446574， 4.

Table 1 Crystallographic and structural refinement details for 1～4

Complex	1	2	3	4
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{CoN}_{10} \mathrm{O}_{12}$	$\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{Cl}_{6} \mathrm{Co}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}$	$\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{Cd}_{2} \mathrm{~N}_{8} \mathrm{O}_{16}$	$\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{Cd}_{2} \mathrm{~N}_{12} \mathrm{O}_{22}$
Formula weight	763.60	889.20	1133.76	1153.60
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group	P2／c	C2／c	$P \overline{1}$	$P \overline{1}$
a / nm	1.072 8（2）	$0.95591(5)$	0.958 04（4）	$0.93713(19)$
b / nm	0.866 88（17）	$2.75300(14)$	1.165 02（5）	1.070 0（2）
c / nm	1.870 9（6）	$1.40673(8)$	$1.20389(4)$	1.270 2（3）
$\alpha /\left({ }^{\circ}\right)$			107．496（3）	109．52（3）
$\beta /\left({ }^{\circ}{ }^{\circ}\right.$	108．80（3）	105．324（5）	106．103（3）	108．64（3）
$\gamma /\left({ }^{\circ}\right)$			100．170（3）	99．59（3）
V / nm^{3}	1.647 1（7）	$3.5704(3)$	1.180 67（8）	1.0828 （4）
Z	2	4	1	1
$D_{\mathrm{c}} /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.540	1.654	1.595	1.769
$F(000)$	794	1808	580	584
μ / mm^{-1}	0.600	1.426	0.977	1.079
θ range $/\left({ }^{\circ}\right.$ ）	3．06～25．35	3．07～26．00	3．05～25．02	$3.16 \sim 25.00$
Limiting indices	$-10 \leqslant h \leqslant 12$	$-11 \leqslant h \leqslant 11$	$-11 \leqslant h \leqslant 11$	$-10 \leqslant h \leqslant 10$
	$-10 \leqslant k \leqslant 10$	$-33 \leqslant k \leqslant 26$	$-12 \leqslant k \leqslant 13$	$-12 \leqslant k \leqslant 12$
	－22＊l＊21	$-12 \leqslant l \leqslant 17$	$-14 \leqslant l \leqslant 14$	$-14 \leqslant l \leqslant 14$
Total reflection	15226	8321	11193	8377

Continued Table 1

Data，restraint，parameter	$3024,0,305$	$3506,0,222$	$4175,3,302$	$3392,29,383$
Initial R indices $[I>2 \sigma(I)]$	$R_{1}=0.0348$,	$R_{1}=0.0330$,	$R_{1}=0.0251$,	$R_{1}=0.0529$,
	$w R_{2}=0.0742$	$w R_{2}=0.0695$	$w R_{2}=0.0592$	$w R_{2}=0.1212$
R indices（all data）	$R_{1}=0.0396$,	$R_{1}=0.0445$,	$R_{1}=0.0289$,	$R_{1}=0.0627$,
	$w R_{2}=0.0765$	$w R_{2}=0.0744$	$w R_{2}=0.0614$	$w R_{2}=0.1321$
Goodness－of－fit	1.095	1.022	1.069	1.063
Largest diff．peak and hole $/\left(\mathrm{e} \cdot \mathrm{nm}^{-3}\right)$	$210,-275$	$289,-325$	$446,-410$	$539,-767$

Table 2 Selected bond lengths（ nm ）and angles（ ${ }^{\circ}$ ）for complexes 1～4

Complex 1					
$\mathrm{Co}(1)-\mathrm{O}(7)$	0.210 28（17）	$\mathrm{Co}(1)-\mathrm{O}(7) \# 1$	0.210 28（17）	$\mathrm{Co}(1)-\mathrm{N}(1)$	$0.21121(16)$
Co（1）－N（1）\＃1	$0.21121(16)$	$\mathrm{Co}(1)-\mathrm{O}(3)$	$0.21400(15)$	$\mathrm{Co}(1)-\mathrm{O}(3) \# 1$	$0.21400(15)$

$\mathrm{O}(7)-\mathrm{Co}(1)-\mathrm{O}(7) \# 1$	172．06（10）	$\mathrm{O}(7)-\mathrm{Co}(1)-\mathrm{N}(1)$	93．67（7）	$\mathrm{O}(7) \# 1-\mathrm{Co}(1)-\mathrm{N}(1)$	91．79（6）
$\mathrm{O}(7)-\mathrm{Co}(1)-\mathrm{N}(1) \# 1$	91．79（6）	$\mathrm{O}(7) \# 1-\mathrm{Co}(1)-\mathrm{N}(1) \# 1$	93．67（7）	$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(1) \# 1$	93．23（9）
$\mathrm{O}(7)-\mathrm{Co}(1)-\mathrm{O}(3)$	88．45（7）	$\mathrm{O}(7) \# 1-\mathrm{Co}(1)-\mathrm{O}(3)$	84．67（7）	$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(3)$	103．40（6）
$\mathrm{N}(1) \# 1-\mathrm{Co}(1)-\mathrm{O}(3)$	163．32（6）	$\mathrm{O}(7)-\mathrm{Co}(1)-\mathrm{O}(3) \# 1$	84．67（7）	$\mathrm{O}(7) \# 1-\mathrm{Co}(1)-\mathrm{O}(3) \# 1$	88．45（7）
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(3) \# 1$	163．32（6）	$\mathrm{N}(1) \# 1-\mathrm{Co}(1)-\mathrm{O}(3) \# 1$	103．40（6）	$\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(3) \# 1$	60．01（8）
Complex 2					
$\mathrm{Co}(1)-\mathrm{N}(1)$	0.204 42（19）	$\mathrm{Co}(1)-\mathrm{N}(2)$	0.2021 （2）	$\mathrm{Co}(1)-\mathrm{Cl}(1)$	0.223 38（7）
$\mathrm{Co}(1)-\mathrm{Cl}(2)$	0.223 74（6）				

$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	105．13（6）	$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(1)$	107．60（8）	$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{Cl}(2)$	108．56（6）
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	107．40（6）	$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{Cl}(2)$	107．46（5）	$\mathrm{Cl}(1)-\mathrm{Co}(1)-\mathrm{Cl}(2)$	120．12（3）
Complex 3					
$\mathrm{Cd}(1)-\mathrm{N}(2) \# 1$	0．230（2）	$\mathrm{Cd}(1)-\mathrm{N}(1)$	0．232（2）	$\mathrm{Cd}(1)-\mathrm{O}(3)$	0．243（2）
$\mathrm{Cd}(1)-\mathrm{O}(4)$	0．237（2）	$\mathrm{Cd}(1)-\mathrm{O}(5)$	0．243（2）	$\mathrm{Cd}(1)-\mathrm{O}(6)$	0．236（2）
$\mathrm{Cd}(1)-\mathrm{O}(6) \# 1$	0．248（2）				

$\mathrm{N}(2) \# 1-\mathrm{Cd}(1)-\mathrm{N}(1)$	173．9（8）	$\mathrm{N}(2) \# 1-\mathrm{Cd}(1)-\mathrm{O}(6)$	89．2（7）	$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(6)$	87．0（7）
$\mathrm{N}(2) \# 1-\mathrm{Cd}(1)-\mathrm{O}(4)$	91．4（7）	$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(4)$	89．3（7）	$\mathrm{O}(6)-\mathrm{Cd}(1)-\mathrm{O}(4)$	146．9（7）
$\mathrm{N}(2) \# 1-\mathrm{Cd}(1)-\mathrm{O}(5)$	88．0（7）	$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(5)$	87．4（7）	$\mathrm{O}(6)-\mathrm{Cd}(1)-\mathrm{O}(5)$	92．4（7）
$\mathrm{O}(4)-\mathrm{Cd}(1)-\mathrm{O}(5)$	54．6（7）	$\mathrm{N}(2) \# 1-\mathrm{Cd}(1)-\mathrm{O}(3)$	91．7（7）	$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(3)$	94．3（8）
$\mathrm{O}(6)-\mathrm{Cd}(1)-\mathrm{O}(3)$	123．7（7）	$\mathrm{O}(4)-\mathrm{Cd}(1)-\mathrm{O}(3)$	89．4（7）	$\mathrm{O}(5)-\mathrm{Cd}(1)-\mathrm{O}(3)$	143．9（7）
$\mathrm{N}(2) \# 1-\mathrm{Cd}(1)-\mathrm{O}(6) \# 1$	94．4（7）	$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(6) \# 1$	88．9（7）	$\mathrm{O}(6)-\mathrm{Cd}(1)-\mathrm{O}(6) \# 1$	71．2（8）
$\mathrm{O}(4)-\mathrm{Cd}(1)-\mathrm{O}(6) \# 1$	141．6（7）	$\mathrm{O}(5)-\mathrm{Cd}(1)-\mathrm{O}(6) \# 1$	163．3（7）	$\mathrm{O}(3)-\mathrm{Cd}(1)-\mathrm{O}(6) \# 1$	52．6（6）
Complex 4					
$\mathrm{Cd}(1)-\mathrm{N}(2)$	0.225 4（5）	$\mathrm{Cd}(1)-\mathrm{N}(3)$	0.225 4（5）	$\mathrm{Cd}(1)-\mathrm{O}(1)$	0.2460 （5）
$\mathrm{Cd}(1)-\mathrm{O}(1) \# 1$	0.2447 （5）	$\mathrm{Cd}(1)-\mathrm{O}(5)$	0.2358 （6）	$\mathrm{Cd}(1)-\mathrm{O}(7)$	0.234 4（5）
$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{N}(3)$	176．53（17）	$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{O}(5)$	93．05（19）	$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(5)$	90．49（17）
$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{O}(4)$	88．0（2）	$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(4)$	92．0（2）	$\mathrm{O}(5)-\mathrm{Cd}(1)-\mathrm{O}(4)$	87．5（3）
$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{O}(1) \# 1$	88．07（17）	$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(1) \# 1$	90．78（17）	$\mathrm{O}(5)-\mathrm{Cd}(1)-\mathrm{O}(1) \# 1$	112．9（2）
$\mathrm{O}(4)-\mathrm{Cd}(1)-\mathrm{O}(1) \# 1$	159．4（2）	$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{O}(1)$	89．25（17）	$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(1)$	87．30（17）
$\mathrm{O}(5)-\mathrm{Cd}(1)-\mathrm{O}(1)$	177．3（2）	$\mathrm{O}(4)-\mathrm{Cd}(1)-\mathrm{O}(1)$	94．1（2）	$\mathrm{O}(1) \# 1-\mathrm{Cd}(1)-\mathrm{O}(1)$	65．6（2）

Symmetry codes：\＃1：$-x, y,-z+1 / 2$ for $1 ; \# 1:-x+2,-y,-z+1$ for $\mathbf{3} ; \# 1-x+1,-y+1,-z+2$ for 4.

Table 3 Hydrogen bond geometries for complexes 1～4

D－H \cdots A	$d(\mathrm{D}-\mathrm{H}) / \mathrm{nm}$	$d(\mathrm{H} \cdots \mathrm{A}) / \mathrm{nm}$	$d(\mathrm{D} \cdots \mathrm{A}) / \mathrm{nm}$	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{A} /\left(^{\circ}\right.$ ）
Complex 1				
$\mathrm{O}(7)-\mathrm{H}(7 \mathrm{a}) \cdots \mathrm{O}(5) \# 3$	0.079	0.203	0.28152	175
$\mathrm{O}(7)-\mathrm{H}(7 \mathrm{~b}) \cdots \mathrm{N}(2) \# 3$	0.091	0.183	0.27398	176
$\mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{O}(7) \# 1$	0.095	0.257	0.31376	118
$\mathrm{C}(9)-\mathrm{H}(9) \cdots \mathrm{O}(5) \# 4$	0.097	0.248	0.32690	138
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A}) \cdots \mathrm{O}(1) \# 5$	0.097	0.252	0.33589	144
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B}) \cdots \mathrm{O}(3) \# 6$	0.099	0.247	0.31470	125
Complex 2				
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A}) \cdots \mathrm{Cl}(2) \# 3$	0.097	0.278	0.36128	145
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B}) \cdots \mathrm{Cl}(1) \# 4$	0.097	0.283	0.36475	143
$\text { Complex } 3$				
$\mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{O}(2)$	0.093	0.247	0.29737	114
$\mathrm{C}(6)-\mathrm{H}(6) \cdots \mathrm{O}(2)$	0.093	0.251	0.30762	119
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B}) \cdots \mathrm{O}(4) \# 2$	0.097	0.258	0.34448	149
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B}) \cdots \mathrm{O}(8) \# 3$	0.097	0.243	0.33869	170
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B}) \cdots \mathrm{O}(1) \# 4$	0.096	0.259	0.34920	157
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C}) \cdots \mathrm{O}(1) \# 5$	0.096	0.250	0.33850	153
Complex 4				
$\mathrm{O}(4)-\mathrm{H}\left(5^{\prime}\right) \cdots \mathrm{O}(2)$	0.072	0.248	0.3043	136
$\mathrm{O}(4)-\mathrm{H}\left(5^{\prime}\right) \cdots \mathrm{O}(11 \mathrm{~A})$	0.072	0.247	0.281	111
$\mathrm{O}(15)-\mathrm{H}(15 \mathrm{~A}) \cdots \mathrm{O}(11 \mathrm{~A})$	0.096	0.206	0.2746	127.1
$\mathrm{O}(5)-\mathrm{H}\left(2^{\prime}\right) \cdots \mathrm{O}(3) \# 1$	0.074	0.257	0.3090	128.7
$\mathrm{O}(5)-\mathrm{H}\left(2^{\prime}\right) \cdots \mathrm{O}(8 \mathrm{~A}) \# 2$	0.074	0.244	0.2798	111.5
$\mathrm{O}(12)-\mathrm{H}\left(3^{\prime}\right) \cdots \mathrm{O}(7) \# 4$	0.085	0.233	0.3031	140
$\mathrm{O}(12)-\mathrm{H}\left(3^{\prime}\right) \cdots \mathrm{O}(11 \mathrm{~A}) \# 5$	0.085	0.259	0.317	127
$\mathrm{O}(12)-\mathrm{H}\left(4^{\prime}\right) \cdots \mathrm{O}(5) \# 5$	0.085	0.204	0.2717	136
$\mathrm{O}(4)-\mathrm{H}\left(5^{\prime}\right) \cdots \mathrm{O}(10) \# 3$	0.072	0.214	0.2741	142
$\mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{O}(3) \# 1$	0.101	0.256	0.3410	142
$\mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{O}(6) \# 1$	0.101	0.249	0.2988	110
$\mathrm{C}(13)-\mathrm{H}(12) \cdots \mathrm{O}(8 \mathrm{~A}) \# 2$	0.095	0.255	0.3186	124
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A}) \cdots \mathrm{O}(10) \# 3$	0.093	0.250	0.3425	175
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B}) \cdots \mathrm{O}(8 \mathrm{~A}) \# 6$	0.111	0.220	0.3265	160

Symmetry codes：\＃1：$-x, y,-z+1 / 2 ; \# 3:-x, y-1,-z+1 / 2 ; \# 4: x, y-1, z ; \# 5:-x+1,-y,-z+1 ; \# 6:-x,-y,-z+1$ for $1 ; \# 3:-x+1$ ， $-y,-z+1$ ；\＃4：$-x+1 / 2,-y+1 / 2,-z+1$ for 2；\＃1：$-x+2,-y,-z+1$ ；\＃2：$x, y+1, z ; \# 3:-x+1,-y+1,-z ; \# 4:-x+2,-y,-z ; \# 5: x, y-1, z$ for 3；\＃1：1－x，1－y，2－z；\＃2：1－x，－y，1－z；\＃3：$-x, 1-y, 1-z ; \# 4: x-1, y, z ; \# 5: x, 1+y, z ; \# 6: 1-x, 1-y, 1-z$ for 4.

2 Results and discussions

2．1 Description of crystal structures

2．1．1 Crystal structure of complex 1

Single crystal structure reveals that $\mathbf{1}$ crystallizes in the monoclinic space group $P 2 / c$ ．The asymmetric unit consists of a discrete $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{~L})_{2}\right]^{+}$cation and a free nitrate anion（Fig．1a）．In the coordination unit，the Co center adopts slightly distorted tetragonal
biyramid geometry．Two molecules of water occupy the apical sites，and two pyridine nitrogen atoms（from two molecules of ligands）and a chelating nitrate anion are at the ecuatorial plane．Two molecules of L choose a mono－dentated coordination mode in the cation．They lie on the reverse side to avoid steric hindrance．On the equatorial plane，the maximum deviation of Co atom from the mean plane constructed by N1，N1A，O3 and 03 A is 0.021 nm ．The bite angle of $\mathrm{N} 1-\mathrm{Col}-\mathrm{N} 1 \mathrm{~A}$ is
$93.23(9)^{\circ}$ ．It is wider than that of $\mathrm{O} 3-\mathrm{Col}-\mathrm{O} 3 \mathrm{~A}$ $\left(60.01(8)^{\circ}\right)$ ．The average bond lengths for $\mathrm{Co}-\mathrm{N}$ and Co－O are 0.203 nm and 0.212 nm ，separately．They are close with those in $\left[\mathrm{Co}\left(\mathrm{L}^{1}\right)\left(\mathrm{L}^{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{L}^{1}=\right.$ terephthalic acid； $\mathrm{L}^{2}=2,2^{\prime}$－dipyridylamine）of 0.207 and 0.214 nm ，respectively ${ }^{[21]}$ ．The free nitrate anion is stabilized by multiple hydrogen interactions including $\mathrm{O} \cdots \mathrm{H}-\mathrm{C}(0.314 \sim 0.336 \mathrm{~nm})$ and $\mathrm{O} \cdots \mathrm{H}-\mathrm{O}(0.282$ nm ），as is shown in Fig．1b．

Fig． 1 （a）Coordination structural unit with 30% probability ellipsoids in complex 1，where H atoms are omitted for clarify and the symmetry code is \＃1：$-x, y, 1 / 2-z$ ； （b）Interactions of nitrate anion in complex $\mathbf{1}$ where the symmetry code is \＃1：$-1+x,-1+y, z$

2．1．2 Crystal structure of complex 2

Complex 2 crystallizes in the monoclinic space group $C 2 / c$ ．The asymmetric unit consists of a neutral ［ $\left.\mathrm{Co}(\mathrm{L}) \mathrm{Cl}_{2}\right]$ unit and half a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule，as shown in Fig．2a．In the coordination unit，each Co atom is coordinated by two nitrogen atoms from pyridine rings and two Cl atoms，adopting a tetrahedral $\left[\mathrm{CoN}_{2} \mathrm{Cl}_{2}\right]$ coordination geometry．The angle of $\mathrm{N} 2-$ $\mathrm{Co} 1-\mathrm{N} 1$ is $107.60(8)^{\circ}$ ．It is smaller than that reported in $\left[\mathrm{Co}_{2} \mathrm{Cl}_{4}\left(\mathrm{~L}^{3}\right)_{2}\right]\left(\mathrm{L}^{3}=1,2\right.$－dimethoxy $-4,5$－bis（ 2 －pyridyl－ ethynyl）benzene）of $117.53(9)^{\text {o［8］}}$ ．This might be due to
the tension of octagonal ring in ligand．Two pyridine rings in ligand L arrange in an opposite direction．Li－ gand L acts as a trans－bridge，and they wrap around two cobalt atoms producing a helical 24－membered macrocycle．The Co \cdots Co distance is 0.700 nm ．The distance between the center of heterooctane is 1.019 nm ．The average bond lengths for $\mathrm{Co}-\mathrm{N}(0.203 \mathrm{~nm})$ and $\mathrm{Co}-\mathrm{Cl}(0.224 \mathrm{~nm})$ are in agreement with those in $\left[\mathrm{Co}_{2} \mathrm{Cl}_{4}\left(\mathrm{~L}^{4}\right)_{2}\right] \quad\left(\mathrm{L}^{4}=N, N^{\prime}-(1,2\right.$－phenylene $)$ diisonicotin－ amide ）（ $\mathrm{Co}-\mathrm{N} 0.203 \mathrm{~nm}, \mathrm{Co}-\mathrm{Cl} 0.223 \mathrm{~nm})^{[4]}$ and $\left[\mathrm{Co}_{2} \mathrm{Cl}_{4}\left(\mathrm{~L}^{3}\right)_{2}\right](\mathrm{Co}-\mathrm{N} 0.203 \mathrm{~nm}, \mathrm{Co}-\mathrm{Cl} 0.224 \mathrm{~nm})$

Fig． 2 （a）Coordination structural unit with 30% probability ellipsoids in complex 2，where H atoms and solvent molecule are omitted for clarify；（b）Interactions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule in complex 2 ，where the symmetry codes are $\# 1:-x+1,-y,-z+1 ; \# 2: 1 / 2-x$ ， $1 / 2-y, 1-z ; \# 3:-1 / 2+x, 1 / 2-y, 1 / 2+z$
${ }^{[8]}$ ．The free solvent molecule $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is not eclipsed in the macrocycle，and it is stabilized by three adjacent coordination molecules as is illustrated in Fig．2b．It might result from the gentle reaction condition as well as the intermolecular hydrogen interactions of $\mathrm{Cl} \cdots \mathrm{H}-$ $\mathrm{C}(\mathrm{Cl} \cdots \mathrm{C} 0.305 \mathrm{~nm})$ and $\mathrm{O} \cdots \mathrm{H}-\mathrm{C}(\mathrm{O} \cdots \mathrm{C} 0.277 \mathrm{~nm})$ ．

2．1．3 Crystal structure of complex 3

Complex $\mathbf{3}$ crystallizes in the triclinic space group $P \overline{1}$ ．The asymmetric unit consists of a discrete $[\mathrm{Cd}(\mathrm{L})(\mu$ $-\mathrm{OAc})(\mathrm{OAc})]$（Fig．3a）and two molecules of methanol． The Cd center is seven－coordinated by two separate pyridine ligands，two bridged acetates and another che－ lated acetate anion forming a distorted pentagonal bipy－

Fig． 3 （a）Coordination structural unit with 30% probability ellipsoids in complex $\mathbf{3}$ ，where H atoms and solvent molecules are omitted for clarify and the symmetry code is \＃1： $2-x,-y, 1-z$ ；（b）Interactions of $\mathrm{CH}_{3} \mathrm{OH}$ solvent molecules in complex $\mathbf{3}$ ，where the symmetry code is \＃1： $1-x, 1-y, 1-z$
ramidal geometry．The N atoms of the bipyridine occu－ py the apical sites and the O atoms of the acetate units lie in the equatorial plane．In complex $\mathbf{3}$ ，pyridine rings in ligand L arrange parallel to each other．Two mole－ cules of ligand L act as cis－bridge，and link with two Cd $\left(\mathrm{NO}_{3}\right)_{2}$ units forming two rectangle cavities．The Cd \cdots Cd separation is 0.393 nm ．The mean $\mathrm{Cd}-\mathrm{N}(0.231$ $\mathrm{nm})$ and $\mathrm{Cd}-\mathrm{O}(0.241 \mathrm{~nm})$ bond lengths are in agree－ ment with those in $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{5}\right)_{4}\left(\mathrm{~L}^{6}\right)_{2}\right]\left(\mathrm{L}^{5}=\operatorname{bis}(4\right.$－bromobenzo－ ate）， $\mathrm{L}^{6}=1,3-\operatorname{bis}(4-$ pyridyl）propane）$(0.231,0.242 \mathrm{~nm})$ ${ }^{[22]}$ ．Four free methanol molecules are stabilized by mul－ tiple hydrogen interactions of $\mathrm{O} \cdots \mathrm{H}-\mathrm{O}(\mathrm{O} \cdots \mathrm{O} 0.271 \sim$ $0.273 \mathrm{~nm})$ and $\mathrm{O} \cdots \mathrm{H}-\mathrm{C}(\mathrm{O} \cdots \mathrm{C} 0.297 \sim 0.349 \mathrm{~nm}$ ， Fig．3b）．

2．1．4 Crystal structure of complex 4

Complex $\mathbf{4}$ crystallizes in the triclinic space group $P \overline{1}$ ．The asymmetric unit consists of a $\left[\mathrm{Cd}(\mathrm{L})\left(\mu-\mathrm{NO}_{3}\right)\right.$ $\left.\left(\mathrm{CH}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$cation（Fig．4a），one disordered nitrate anion and one molecule of water．The Cd center is six－ coordinated by two separate pyridine ligands，two bridged nitrate anions，one water molecule and one methanol molecule forming a distorted tetragonal bipy－ ramidal geometry．The bipyridine ligand L in complex

Fig． 4 （a）Coordination structural unit with 30% probability ellipsoids in complex 4，where H atoms，counter nitrate anions and solvent molecules are omitted for clarify and the symmetry code is \＃1：$-x+1, y$ ， $-z+1 / 2$ ；（b）Hydrogen bond interactions in complex 4

4 adopts a similar coordination mode with that in com－ plex 3．The $\mathrm{Cd} \cdots \mathrm{Cd}$ separation is 0.412 nm ．The aver－ age bond lengths for $\mathrm{Cd}-\mathrm{N}$ and $\mathrm{Cd}-\mathrm{O}_{\text {nitrate }}$ are 0.226 and 0.246 nm ，separately．They are comparable to those reported in complexes $\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}-1-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}\right]_{2} \mathrm{Cd}_{2}$ $\left(\mathrm{NO}_{3}\right)_{4} \cdot \mathrm{CH}_{3} \mathrm{OH} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}(0.224 \text { and } 0.249 \mathrm{~nm})^{[23]}$ and $\left[\mathrm{Cd}_{4}\left(\mathrm{~L}^{7}\right)_{4}\left(\mathrm{NO}_{3}\right)_{6}(\mathrm{MeOH})_{6}\right]^{2+}\left(\mathrm{L}^{7}=4,4^{\prime}\right.$－bis $(4$－pyridyl）biphe－ nyl）$(0.226 \text { and } 0.249 \mathrm{~nm})^{[13]}$ ．One water molecule and a disordered nitrate anion are stabilized by multiple hydrogen interactions of $\mathrm{O} \cdots \mathrm{H}-\mathrm{O} \quad(\mathrm{O} \cdots \mathrm{O} \quad 0.272 \sim$
$0.317 \mathrm{~nm})$ and $\mathrm{O} \cdots \mathrm{H}-\mathrm{C}(\mathrm{O} \cdots \mathrm{C} 0.299 \sim 0.341 \mathrm{~nm})$ （Fig．4b）．

In complexes $\mathbf{1 \sim 4}$ ，the average torsion angles of two pyridyl rings varied from 42.88°（2）to 19.34°（4）． The corresponding centre distances of two pyridyl rings range from $0.4979(2)$ to 0.3820 nm （4）（Table 4）． Through rotation of the $\mathrm{N}-\mathrm{C}$ bonds and broaden or compress of two pyridine rings，the ligand L molecule has displayed considerable flexibility to adjust itself to adapt different coordination environment．

Table 4 Torsion angles and centre distances between two pyridyl rings of ligand L in complexes 1～4

Compound	$\mathrm{L}^{[17]}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Torsion angle between two pyridyl rings $/\left({ }^{\circ}\right)$	45.77	40.52	42.88	22.43	19.34
Centre distance between two pyridyl rings $/ \mathrm{nm}$	0.4942	0.4673	0.4979	0.3866	0.3820

2．2 IR spectra of complexes 1 to 4

In the IR spectra of complexes 1～4（Fig．5），bands around $1602,1578,1495 \mathrm{~cm}^{-1}(\mathbf{1}), 1600,1577$ ， $1495 \mathrm{~cm}^{-1}(\mathbf{2}), 1560,1498,1420 \mathrm{~cm}^{-1}(\mathbf{3})$ and 1602 ， $1578,1499 \mathrm{~cm}^{-1}(\mathbf{4})$ are assigned to the stretching vibrations of pyridine groups，separately．The strong peaks around $1136 \mathrm{~cm}^{-1}$ in all complexes are attribut－ ed to the stretching vibrations of the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ bond．The symmetric and antisymmetric stretchings of $\mathrm{C}-\mathrm{H}$ bonds（－ $\mathrm{CH}_{2}-$ units in ligand）in complexes $\mathbf{1} \sim$ 4 are also in agreement with each other．They were in the region of $2902 \sim 3042 \mathrm{~cm}^{-1}(\mathbf{1}), 2903 \sim 3077 \mathrm{~cm}^{-1}$ （2）， 2 901～2 $967 \mathrm{~cm}^{-1}$（3）and $2901 \sim 2974 \mathrm{~cm}^{-1}$（4）， respectively．Strong vibrations of $1370,1309 \mathrm{~cm}^{-1}$（1） and $1364,1303 \mathrm{~cm}^{-1}(4)$ are attributed to the NO_{3}^{-} anions ${ }^{[24]}$ ．The isolated peak of $731 \mathrm{~cm}^{-1}$ in complex 2 is

Fig． 5 IR spectra of complexes $\mathbf{1 \sim 4}$
assigned as antisymmetric stretching of $\mathrm{C}-\mathrm{Cl}$ bonds in $\mathrm{CH}_{2} \mathrm{Cl}_{2}^{[25]}$ ．The broad bands at $3440 \mathrm{~cm}^{-1}(\mathbf{3})$ and 3408 $\mathrm{cm}^{-1}(\mathbf{4})$ are attributed the stretching of $\mathrm{O}-\mathrm{H}$ ．The infrared spectra of these complexes are in good accor－ dance with their structural features．

2．3 Thermal stabilities of L and complexes 1～4

Thermogravimetric analyses（TGA）of ligand L and complexes $\mathbf{1 \sim 4}$ were carried out under air atmo－ sphere from 30 to $700{ }^{\circ} \mathrm{C}$ with a heating rate of $10{ }^{\circ} \mathrm{C} \cdot$ $\min ^{-1}$ using crystalline samples，and the resulting curves are shown in Fig．6．The skeleton of ligand L de－ composed at around $194{ }^{\circ} \mathrm{C}$ ．Correspondingly，curves in $\mathbf{1}\left(178{ }^{\circ} \mathrm{C}\right), \mathbf{2}\left(174{ }^{\circ} \mathrm{C}\right), \mathbf{3}\left(214{ }^{\circ} \mathrm{C}\right)$ and $\mathbf{4}\left(207{ }^{\circ} \mathrm{C}\right)$ have shown dramatic stages of weight loss，which might be attributed to the decomposition of ligand．In complex 1， the fisrt stage of weight loss $\left(150 \sim 178{ }^{\circ} \mathrm{C}\right)$ is attributed

Fig． 6 TGA curves of L and complexes $\mathbf{1 \sim 4}$ in air
to the loss of HNO_{3} and $\mathrm{H}_{2} \mathrm{O}$（Obsd． 15.66% ，Calcd． 16.51% ），then accompanied by the degradation of ligand gradually．There are two steps of weight loss（in the region of $178 \sim 300{ }^{\circ} \mathrm{C}$ and $400 \sim 500^{\circ} \mathrm{C}$ ，respectively）， the decomposition residue is in accordance with CoO （Obsd．10．36\％，Calcd．9．81\％）．For complex 2，dichlo－ romethane was unstable and escaped when exposing to the air，it was removed before thermogravimetric test． Ligand L molecules started to degrade at $174{ }^{\circ} \mathrm{C}$ ，and it showed two complicated degradation process（in the region of $174 \sim 200^{\circ} \mathrm{C}$ and $200 \sim 375^{\circ} \mathrm{C}$ ，separately）．The final decompsition residue is suggested to be CoO （Obsd． 17.54% ，Calcd． 18.13% ）．For complex 3，molecules of free methanol were unstable and partially escaped when exposing to the air．The weight loss of the first stage（from 30 to $105{ }^{\circ} \mathrm{C}$ ）corresponds to the loss of methanol molecules（Obsd．7．6\％，Calcd．11．3\％）．The weight loss of the second stage $\left(214 \sim 700{ }^{\circ} \mathrm{C}\right)$ indicates the decomposition of two molecules of ligand L and $\mathrm{CH}_{3} \mathrm{COO}^{-}$．For complex 4，the weight loss of the first stage（from 30 to $100{ }^{\circ} \mathrm{C}$ ）corresponds to the loss of free water molecules and methanol（Obsd．8．54\％，Calcd． 8.68% ）．The skeleton of ligand L began to decompose at $207^{\circ} \mathrm{C}$ ，and did not end up to $550^{\circ} \mathrm{C}$ ，exhibiting two weight loss platforms in TGA curve．Accompanied by gradually sublimation of CdO ，there was almost no resi－ due for complexes $\mathbf{3}$ and $\mathbf{4}$ ．Thermogravimetric analysis indicates that，the bipyridine ligands have shown obvi－ ous two steps decomposition in complexes $\mathbf{1 , 2}$ and $\mathbf{4}$ ， and the ligands in cis－bridge complexes are more stable than those in mono－dentated and trans－bridge complexes．

Fig． 7 PXRD patterns of complex 1

2．4 Powder X－ray diffraction of complex 1

The phase purity of bulk products of complex $\mathbf{1}$ was further confirmed by elemental analysis and PXRD．As is illustrated in Fig．7，the PXRD pattern of the synthesized sample was consistent with the simulat－ ed one from single crystal structure．

3 Conclusions

Four transition metal complexes were prepared by utility of a clamplike bipyridine ligand 3，7－di（3－pyridyl） －1，5－dioxa－3，7－diazacyclooctane．Single－crystal struc－ tures，IR spectra and thermal stabilities of these com－ plexes have been discussed．The bipyridine ligand mol－ ecule has displayed diversity coordination mode in these complexes．All of these architectures have shown considerable stabilties．The study on its coordination chemistry with other metal ions is continuing．

References：

［1］Kumar S，Mandon D．Inorg．Chem．，2015，54（15）：7481－7491
［2］Geyer F L，Rominger F，Vogtland M，Bunz U H F．Cryst．Growth Des．， 2015，15（7）：3539－3544
［3］Wang Z J，Qin L，Zhang X，Chen J X，Zheng H G．Cryst．Growth Des．， 2015，15（3）：1303－1310
［4］Jones C D，Tan J C，Lloyd G O．Chem．Commun．，2012，48（15）：2110－ 2112
［5］Zhao Q，Liu X M，Song W C，Bu X H．Dalton Trans．，2012，41（22）： 6683－6688
［6］Li N，Jiang F L，Chen L，Li X J，Chen Q H，Hong M C．Chem．Commun．， 2011，47（8）：2327－2329
［7］Carlucci L，Ciani G，Proserpio D M，Rizzato S．CrystEngComm，2002， 4（22）：121－129
［8］Fiscus J E，Shotwell S，Layland R C，Hipp R E，Goforth A M，Chap－ man C T，Smith M D，Bunz U H，Loye H C．J．Chem．Crystallogr．， 2005，35（11）：903－912
［9］Mukherjee P S，Min K S，Arif A M，Stang P J．Inorg．Chem．，2004，43 （20）：6345－6350
［10］Li J C，Li H X，Li H Y，Gong W J，Lang J P．Cryst．Growth Des．， 2016，16（3）：1617－1625
［11］Caradoc－Davies P L，Hanton L R．Dalton Trans．，2003，9：1754－1758
［12］Grosshans P，Jouaiti A，Bulach V，Planeix J M，Hosseini M W，Kyrit－ sakas N．Eur．J．Inorg．Chem．，2004（3）：453－458
［13］Braga D，Polito M，D＇Addari D，Tagliavini E，Proserpio D M，Grepi－ oni F，Steed J W．Organometallics，2003，22（22）：4532－4538
［14］Li G B，Liu J M，Cai Y P，Sun C Y．Cryst．Growth Des．，2011，11（7）： 2763－2772
无 机 化 学 学 报

第 37 卷
［15］史卫东，郑德华，王梅．无机化学学报，2015，31（11）：2205－2512 SHI W D，ZHENG D H，W ANG M．Chinese J．Inorg．Chem．，2015，31 （11）：2205－2512
［16］周杰，董顺芳，乔永锋，杜琳，间桐，谢明进，赵琦华．无机化学学报，2015，31（11）：2095－2102
ZHOU J，DONG S F，QIAO Y F，DU L，YAN T，XIE M J，ZHAO Q H．Chinese J．Inorg．Chem．，2015，31（11）：2095－2102
［17］Li L，Li H Y，Ren Z G，Lang J P．Eur．J．Inorg．Chem．，2014（5）：824－ 830
［18］CrystalStructure，Single Crystal Structure Analysis Software，Ver． 3．00，Rigaku／MSC， 9009 New Trails Drive，The Woodlands，TX， USA．
［19］Sheldrick G M．Acta Crystallogr．Sect．A，2008，A64（1）：112－122
［20］Schönleber A，Smaalen S，Larsen F K．Acta Crystallogr．Sect．C， 2010，C66（4）：m107－m109
［21］Rogan J，Poleti D，Karanović L，Bogdanović G，Biré A S，Petrović D M．Polyhedron，2000，19（11）：1415－1421
［22］Liu D，Zi Y Q，Ng S W．Acta Crystallogr．Sect．E，2011，E67（11）： m1621
［23］Biradha K，Fujita M．Chem．Commun．，2002，17：1866－1867
［24］Nakamoto K．Infrared and Raman Spectra of Inorganic and Coordi－ nation Compounds，Part B：Applications in Coordination，Organome－ tallic，and Bioinorganic Chemistry．6th ed．Hoboken：John Wiley \＆ Sons，Inc．， 2009.
［25］Palma B F E，Piotrowski E A，Sundaram S，Cleveland F F．J．Mol． Spectrosc．，1964，13（1／2／3／4）：119－131

[^0]: 收稿日期：2020－02－11。收修改稿日期：2020－10－27。
 苏州科技大学青年基金（No．XKQ201512）资助。
 E－mail：leeleaa＠163．com

