两个三(邻溴苄基)锡羧酸酯的合成、结构及抗肿瘤活性

刘 熙 张复兴* 何丽芳 李达伟 曾维鸿 江叔沄 贺 霞 盛良兵 朱小明 (衡阳师范学院化学与材料科学学院,功能金属有机化合物湖南省重点实验室, 金属有机新材料湖南省普通高等学校重点实验室,衡阳 421008)

摘要:合成了2个有机锡羧酸酯化合物三(邻溴苄基)锡噻吩2-甲酸酯(1)和三(邻溴苄基)锡肉桂酸酯(2)。通过元素分析、红外光谱、核磁共振谱(¹H、¹³C和¹¹⁹Sn)、差热分析、X射线单晶衍射方法对1和2进行了结构表征,对其结构进行了量子化学从头计算。结果显示,化合物1和2均为单锡核结构,锡原子均为四配位的畸变四面体构型。体外抗癌活性研究表明化合物1和2对人乳腺癌细胞(MCF-7)、人非小细胞肺癌细胞(A549)和人大细胞肺癌细胞(H460)均显示出较强的抑制活性。

关键词: 三(邻溴苄基)锡噻吩 2-甲酸酯; 三(邻溴苄基)锡肉桂酸酯; 晶体结构; 量子化学; 体外抗肿瘤活性
中图分类号: 0614.43⁺2
文献标识码: A
文章编号: 1001-4861(2022)01-0046-07
DOI: 10.11862/CJIC.2022.016

Synthesis, Structure and Antitumor Activity of Two Tris(o-bromobenzyl)tin Carboxylates

LIU Xi ZHANG Fu-Xing* HE Li-Fang LI Da-Wei ZENG Wei-Hong

JIANG Shu-Yun HE Xia SHENG Liang-Bing ZHU Xiao-Ming

(Department of Chemistry and Material Science, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials of Colleges of Hunan Province, Hengyang Normal University, Hengyang, Hunan 421008, China)

Abstract: Two organotin carboxylate compounds, tri(*o*-bromobenzyl)tin thiophene 2-carboxylate (1) and tri(*o*-bromobenzyl)tin cinnamate (2), have been synthesized. Compounds 1 and 2 were characterized by elemental analysis, IR spectroscopy, NMR (¹H, ¹³C, and ¹¹⁹Sn), thermogravimetric analysis, and single-crystal X-ray diffraction. The study on compounds 1 and 2 has been performed with quantum chemistry calculation and *in vitro* anticancer activity. The results showed that the tin atoms in compounds 1 and 2 have distorted tetrahedral geometry. Compounds 1 and 2 had strong inhibitory activities against human breast cancer cells (MCF-7), human non-small cell cancer cells (A549), and human lung cancer cell lines (H460). CCDC: 2109938, 1; 2109939, 2.

Keywords: tri(o-bromobenzyl)tin thiophene 2-carboxylate; tri(o-bromobenzyl)tin cinnamate; crystal structure; quantum chemistry; in vitro antitumor activity

国家癌症中心最新发布的全国癌症统计数据显示,近10年来,我国恶性肿瘤发病率每年增幅达3.9%,死亡率每年增幅达2.5%,恶性肿瘤占国民全部死因的23.9%^[1]。药物治疗已成为当今临床治疗癌症的重要手段之一。近年来,抗肿瘤药物的研发虽然取得了许多重要进展^[2-3],但仍然缺乏高效、特

异性强的抗肿瘤药物。因此,新型抗肿瘤药物的研 发对癌症的治疗具有重大意义。有机锡化合物具 有良好的抑制癌细胞增殖活性的作用,为开发高选 择性、高效、低毒的抗肿瘤药物开辟了新的方向,引 起了人们极大的兴趣^[46]。研究表明,许多有机锡化 物具有极其高效广谱的抗癌活性^[7-12],有机锡羧酸酯

收稿日期:2021-06-09。收修改稿日期:2021-10-21。

湖南省教育厅重点项目(No.19A070)、湖南省高校创新平台开放基金项目(No.18K089)、湖南省重点实验室开放基金(No.M018K07)、湖 南省应用特色学科基金、湖南省高校科技创新团队支持计划、衡阳市科技局项目和湖南省大学生创新创业训练计划项目资助。 *通信联系人。E-mail;zfx8056@163.com,Tel:0734-8484932

是有机锡化合物中最重要的一类,不仅具有良好的 性能,也具有丰富多变的结构,因而备受人们广泛 关注^[13-19]。为了更系统地研究该类化合物,我们合 成了三(邻溴苄基)锡噻吩2-甲酸酯(1)和三(邻溴苄 基)锡肉桂酸酯(2),通过元素分析、红外光谱、核磁共 振谱('H、¹³C和¹¹⁹Sn)进行了表征,用X射线单晶衍射 测定了晶体结构,对其结构进行量子化学从头计 算,探讨了化合物分子的稳定性、分子轨道能量以 及一些前沿分子轨道的组成特征。并研究了其热 稳定性和体外抗癌活性。

1 实验部分

1.1 仪器与试剂

合成反应在微波有机合成系统(MicroSYNTLabstation for Microwave assisted,意大利)中完成。红外 光谱用 Shimadzu FTIR8700(KBr 压片,400~4 000 cm⁻¹)光谱仪测定。元素组成用 PE-2400型元素分析 仪测定,核磁共振用 Avance III HD 500 MHz 全数字 化超导核磁共振谱仪(瑞士 Bruker 公司,TMS 为内 标)测定。高分辨质谱(HRMS)用 Waters Acquity UPLC H-CLASS XEVO G2-XS Qtof 飞行时间串联液 质联用仪测定。1和2的晶体结构用 BrukerSmart Apex II CCD单晶衍射仪测定。1和2的熔点用北京 泰克X-4数字显微熔点仪测定。1和2的熔点用北京 泰克X-4数字显微熔点仪测定。1和2的熔点用北京 范围内对1和2进行热重测试。所有试剂为分 析纯。

1.2 化合物的合成

化合物 1:取 0.708 g(1 mmol) 三(邻溴苄基)溴化 锡、0.128 g(1 mmol)噻吩 2-甲酸和 1 mmol 三乙胺溶 于 40 mL 甲醇中,将溶液转入聚四氟乙烯微波反应 罐中,将罐盖密封好,置于微波反应器中。设置微 波有机合成系统温度 120 ℃,微波辐射反应 2 h。冷 却过滤,除去不溶性固体,滤液旋转蒸发除去部分溶 剂,放置析出白色固体,用二氯甲烷–甲醇重结晶得 无 色透明晶体 0.516 g,产率 68.26%。熔点:89~ 91 ℃。元素分析按 $C_{26}H_{21}Br_{3}O_{2}SSn$ 的计算值(%):C, 41.27; H, 2.78。实测值(%):C, 41.13; H, 2.72。 IR (KBr, cm⁻¹):3 082,3 053,2 979,2 932 ν (C—H),1 614 ν_{a} (COO⁻), 1 361 ν_{s} (COO⁻); 538 ν (Sn—C), 426 ν (Sn— O)。¹H NMR (CDCl₃, 500 MHz): δ 7.69(dd, *J*=3.5 Hz, *J* =1.0 Hz, 1H), 7.53~7.46(m, 4H), 7.16~7.13(m, 3H), 7.10~7.07 (m, 4H), 6.96~6.93(m, 3H), 2.93(s, 6H)。 ¹³C NMR(CDCl₃, 125 MHz):δ 191.85, 139.21, 135.29, 133.83,132.08,130.13,129.81,128.77, 127.56, 126.44, 123.58, 28.92。¹¹⁹Sn NMR(CDCl₃, 186 MHz):δ 5.61。 HRMS(ESI) *m/z* C₂₆H₂₁Br₃O₂SSn [M+Na] ⁺ 计算值: 778.7706,实测值:778.7708。

化合物2:按照上述方法,用0.148 g(1 mmol)肉 桂酸代替噻吩2-甲酸,得无色透明晶体三(邻溴苄 基)锡肉桂酸酯 0.594 g, 产率 76.54%。熔点: 107~ 108 ℃。元素分析按C₃₀H₂₅Br₃O₂Sn的计算值(%):C, 46.39; H, 3.22。 实测值(%): C, 46.67; H, 3.28。 IR $(KBr, cm^{-1}): 3\ 057, 3\ 042, 2\ 982, 2\ 929\ \nu(C-H), 1\ 643$ $\nu_{as}(COO^{-})$, 1 337 $\nu_{s}(COO^{-})$, 554 $\nu(Sn-C)$, 434 $\nu(Sn-C)$ O_{\circ}^{1} H NMR(CDCl₃, 500 MHz): δ 7.60(d, J=16 Hz, 1H), 7.56~7.54(m, 2H), 7.50~7.48(m, 3H), 7.43~7.39 (m, 3H), 7.19~7.1(m, 3H), 7.12~7.08(s, 3H), 6.99~6.93 $(s, 3H), 6.52(d, J=16 Hz, 1H), 2.91(s, 6H)_{\circ}$ ¹³C NMR (CDCl₃, 125 MHz): δ 191.74, 144.68, 139.43, 134.78, 132.07, 130.11, 129.88, 128.75, 127.94, 127.51, 126.33, 123.56, 119.17, 28.78° ¹¹⁹Sn NMR(CDCl₃, 186 MHz): δ-3.30。HRMS(ESI) m/z C₃₀H₂₅Br₃O₂Sn [M+Na]⁺计算 值:798.8298,实测值:798.8275。

1.3 晶体结构测定

分别选取大小为0.21 mm×0.20 mm×0.17 mm (1) 和 0.23 mm×0.21 mm×0.20 mm (2)的晶体,在 Bruker SMART APEX II CCD单晶衍射仪上,采用经石墨单 色化的 Mo Kα射线(λ=0.071 073 nm),在 296(2) K下 以φ-ω扫描方式收集数据。可观察衍射点数分别为 4 672 和 6 621[*I*>2σ(*I*)],用于结构分析和精修。衍射 强度数据经多重扫描吸收校正,晶体结构中大部分 非氢原子由直接法解出,其余部分非氢原子在随后 的差值傅里叶合成中陆续确定,对所有非氢原子坐 标及其温度因子采用全矩阵最小二乘法精修。由 理论加氢法给出氢原子在晶胞中的位置坐标,对氢 原子和非氢原子分别采用各向同性和各向异性热 参数精修,全部结构分析工作在 WINGX 上调用 SHELX-97 程序完成。化合物1和2的主要晶体学 数据列于表1。

CCDC:2109938,1;2109939,2°

1.4 化合物的体外抗癌活性测定

人乳腺癌细胞(MCF-7)、人非小细胞肺癌细胞 (A549)和人大细胞肺癌细胞(H460)取自美国组织培 养库,用含10%牛胎血清的RPMI1640(GIBICO,

Parameter	1	2
Empirical formula	$\mathrm{C_{26}H_{21}Br_{3}O_{2}SSn}$	$C_{30}H_{25}Br_{3}O_{2}Sn$
Formula weight	755.91	775.92
Crystal system	Monoclinic	Triclinic
Space group	C2/c	$P\overline{1}$
<i>a</i> / nm	2.675 2(5)	0.982 77(12)
<i>b</i> / nm	1.189 0(2)	1.127 49(14)
<i>c</i> / nm	2.011 8(6)	1.480 43(18)
lpha / (°)		105.168 0(2)
β/(°)	123.644(2)	90.980(2)
γ / (°)		112.470 0(10)
V / nm^3	5.327(2)	1.450 4(3)
Ζ	8	2
$D_{\rm c}$ / (Mg·m ⁻³)	1.885	1.777
μ (Mo K $lpha$) / cm ⁻¹	55.59	50.38
<i>F</i> (000)	2 912	752
θ range for data collection / (°)	1.94-25.00	2.36-27.61
Index range	$-22 \leq h \leq 31, -12 \leq k \leq 14, -23 \leq l \leq 16$	$-12 \leqslant h \leqslant 12, -14 \leqslant k \leqslant 14, -19 \leqslant l \leqslant 19$
Reflection collected	13 130	17 574
Unique reflection (R_{int})	4 672 (0.035 9)	6 621 (0.030 0)
Goodness-of-fit on ${\cal F}^2$	1.042	1.059
Final R indices $R_1, wR_2 [I > 2\sigma(I)]$	0.057 8, 0.168 9	0.039 9, 0.091 7
<i>R</i> indices (all data)	0.087 7, 0.184 1	0.057 7, 0.098 9
Largest diff. peak and hole / (e•nm ⁻³)	2 654 and -1 355	1 582 and -1 498

表1 化合物1和2的晶体学数据

Table 1 Crystallographic data of compounds 1 and 2

Invitrogen)培养液,在含体积分数5%的CO₂的培养 箱内于37℃下培养,用MTT法检测细胞增殖与生长 抑制情况,调整实验细胞数量使在570 nm获得1.3~ 2.2的吸光度,将化合物1和2的测试药液(0.1 nmol· L⁻¹~10 µmol·L⁻¹)设置6个浓度,处理细胞72 h,每个 浓度至少进行3个平行和3次重复实验,应用Graph-Pad Prism5.0软件统计分析确定IC_{so}值。

2 结果与讨论

2.1 化合物的谱学性质

在IR中,化合物1在1614和1362 cm⁻¹处出现 的尖锐吸收峰为羧基的反对称伸缩振动($\nu_{as,COO}$)和对 称伸缩振动吸收峰($\nu_{s,COO}$),而化合物2的 $\nu_{as,COO}$ 和 $\nu_{s,COO}$ 分别在1643和1337 cm⁻¹,其 $\Delta\nu(\Delta\nu=\nu_{as,COO}-\nu_{s,COO})$ 分 別为252和306 cm⁻¹,均大于200 cm⁻¹,表明化合物中 羧基氧都是以单齿形式与锡配位。化合物1和化合 物2分别在427和434 cm⁻¹处出现了吸收峰,该峰为 Sn—O键的伸缩振动吸收峰,说明化合物中有Sn— O键存在。 在¹H NMR 谱中, 化合物 1 和 2 分别在化学位移 7.69~6.93 和 7.56~6.93 之间出现多重峰, 对应为芳 环上的质子, 与锡相连的亚甲基氢的δ分别在 2.93 和 2.91; 化合物 2 的烯烃碳上的 2 个质子的δ分别在 7.60 和 6.52 处出现了双重峰, 其偶合常数均为 16 Hz。在¹³C NMR 谱中, 化合物 1 和 2 羰基碳的δ分别 在 191.85 和 191.74 处, 亚甲基碳的δ分别在 28.92 和 28.78 处; 化合物 1 芳环上碳的δ出现在 139.21~ 123.85, 化合物 2 芳环上碳和烯烃上碳的δ在 144.68~119.17之间。在¹¹⁹Sn NMR 谱中, 化合物 1 和 2分别在δ为 5.61 和-3.30 处出现峰。以上红外和核 磁数据结果与 X 射线单晶衍射测定的晶体结构相 吻合。

2.2 晶体结构分析

化合物的主要键长和键角列于表2,化合物1和 2的分子结构见图1、2,晶胞堆积图见图3、4。由分 子结构图和结构参数可知:2个化合物均为单锡核 结构,中心Sn原子与3个亚甲基C原子和1个羧基O 原子相连形成四面体构型。配体和溴代苄基的空

Table	Table 2Selected bond lengths (nm) and bond angles ($^{\circ}$) of compounds 1 and 2							
	1							
Sn1-01	0.207 2(6)	Sn1—C15	0.211 3(9)	Sn1—C8	0.212 9(8)			
Sn1—C1	0.216 2(7)							
01—Sn1—C15	110.9(3)	C15—Sn1—C8	116.1(3)	C15—Sn1—C1	113.7(4)			
01—Sn1—C8	101.7(3)	01—Sn1—C1	96.2(3)	C8—Sn1—C1	115.5(3)			
		2						
Sn1-02	0.206 0(3)	Sn1—C24	0.214 7(4)	Sn1—C10	0.216 3(4)			
Sn1—C17	0.214 1(4)							
02—Sn1—C17	104.29(15)	C17—Sn1—C24	117.73(17)	C17—Sn1—C10	114.48(18)			
02—Sn1—C24	108.71(14)	02—Sn1—C10	96.57(14)	C24—Sn1—C10	112.29(17)			

- 图1 化合物1的椭球概率15%的分子结构图
- Fig.1 Molecular structure of compound **1** with ellipsoids drawn at 15% probability level

图 3 化合物 1 的晶胞堆积图 Fig.3 Packing of compound 1 in a cell

图 2 化合物 2 的椭球概率 15% 的分子结构图 Fig.2 Molecular structure of compound 2 with ellipsoids drawn at 15% probability level

图 4 化合物 2 的晶胞堆积图 Fig.4 Packing of compound 2 in a cell

间互斥作用使化合物中3个Sn-C键的键长、键角 不等。化合物1和2中Sn原子与2个羧基0原子之 间的距离分别为0.207 2、0.277 0 nm 和 0.206 0、 0.277 8 nm,都只有其中的一个小于 Sn 原子与 O 原 子的共价半径之和(0.216 nm), 而另一个远大于这2 个原子的共价半径之和,说明2个化合物中都只有 一个羧基0原子与Sn很好地成键,而另一个羧基0 原子未能与Sn原子成键。因此,2个化合物中的羧 基均是以单齿形式与锡原子配位,生成四配位的畸 形四面体,与红外光谱测得的结果一致。化合物2 与已报道的三(邻氯苄基)锡肉桂酸酯[20]具有相似的 晶体结构,两者都属三斜晶系,空间群均为P1,但由 于溴原子和氯原子的电子效应和空间效应的差别, 使得中心锡原子与配位原子的键长与键角存在 差异。

2.3 量子化学研究

根据晶体结构的原子坐标,运用Gaussian 03W 程序在 B3LYP/lanl2dz 基组水平上计算得到1和2 的分子总能量和分子轨道能量。化合物1:E_T= -1 197.684 165 4 a.u., $E_{HOMO} = -0.311$ 07 a.u., $E_{IIIMO} =$ 0.066 30 a.u., Δ*E*=*E*_{LUMO}-*E*_{HOMO}=0.377 37 a.u.。化合 物 **2**: $E_{\rm T}$ =-1 341.572 632 4 a.u., $E_{\rm HOMO}$ =-0.314 44 a.u. *E*_{UM0}=0.066 94 a.u., Δ*E*=0.381 38 a.u.。从体系能量 和前沿轨道的能量来看,体系能量和前沿占有轨道 的能量均较低,表明1和2分子结构较稳定。最高 占据轨道与最低未占轨道的能量间隙 ΔE 均较大, 说明1和2均较难失去电子而被氧化。

为探索化合物1和2的电子结构与成键特征, 将化合物的分子轨道进行分析,用参与组合的各类

原子轨道系数的平方和来表示该部分在分子轨道 中的贡献,并经归一化。分别把化合物的原子分为 7部分,化合物1:(a) 锡原子Sn;(b) 配体羧基碳原子 和氧原子L;(c)苄基亚甲基碳C1;(d)配体噻吩环碳 和硫 M;(e) 苄基苯环碳原子 C2;(f) 溴原子 Br;(g) 氢 原子H。化合物2:(a) 锡原子Sn;(b) 配体羧基碳原 子和氧原子L;(c) 苄基亚甲基碳C1;(d) 配体苯乙烯 基碳原子C2;(e) 苄基苯环碳原子C3;(f) 溴原子Br; (g) 氢原子H。前沿占有轨道和未占有轨道各取5 个,计算结果如表3、4和图5、6所示。

表3和图5显示化合物1的成键特征:前沿占有 分子轨道中,对分子轨道贡献最大的是邻溴苄基苯 环碳原子和亚甲基碳原子,分别为65.55%和 16.38%;其次是溴原子和锡原子,分别为8.06%和 4.31%。说明:一是溴代苯环具有良好的共轭性和 较强的稳定性;二是亚甲基碳原子与锡原子结合良 好,分子中Sn-C键较稳定。比较HOMO与LUMO 的各类原子轨道成份,可以看出,当电子从HOMO 激发到LUMO轨道时,其它原子上的电子都集中向 配体转移,配体的羧基既是电子转移的桥梁也是电 子转移的部分受体,而配体的噻吩环则是电子转移 的主要受体。

表4和图6显示化合物2的成键特征:前沿占有 分子轨道中,对分子轨道贡献最大的是邻溴苄基苯 环碳原子和亚甲基碳原子,分别为59.72%和 19.51%;其次是配体苯乙烯基碳原子、溴原子和锡 原子,分别为8.17%、5.32%和4.21%。说明:一是溴 代苯环具有良好的共轭性和较强的稳定性;二是亚 甲基碳原子与锡原子结合良好,分子中Sn-C键较

表3 化合物1的前沿分子轨道组成

MO	a / IItura	Composition / %						
MO	E / nartree	Sn	L	C1	М	C2	Br	Н
108	-0.335 56	0.412 05	4.059 59	0.626 80	49.214 32	37.856 70	7.666 52	0.147 98
109	-0.332 03	2.551 17	0.962 92	2.967 11	0.774 89	72.247 61	19.913 69	0.572 59
110	-0.331 23	0.496 62	0.168 51	1.360 09	0.092 44	76.247 44	21.372 32	0.255 01
111	-0.317 83	4.314 98	0.988 06	16.380 19	1.243 86	66.702 26	8.188 73	2.180 49
112HO	-0.311 07	4.427 80	0.743 53	19.309 54	0.261 15	65.551 73	8.055 14	1.643 39
113LU	0.066 30	3.188 77	15.218 23	2.163 56	75.321 01	3.282 39	0.057 80	0.762 05
114	0.105 19	18.881 76	1.611 25	3.398 14	1.060 90	71.663 38	1.889 11	1.491 79
115	0.109 21	4.430 74	0.712 20	3.548 13	0.609 57	87.485 86	1.839 24	1.371 42
116	0.114 17	1.084 39	0.078 63	2.261 61	0.064 88	92.122 18	2.145 09	2.236 02
117	0.116 76	2.851 16	0.708 32	2.768 33	0.957 61	87.566 15	2.389 38	2.756 05

 Table 3
 Calculated frontier molecular orbital composition of compound 1

表4 化合物2的分子轨道组成

	Table 4Calculated frontier molecular orbital composition of compound 2								
NO	. / 11	Composition / %							
MO	E / Hartree	Sn	L	C1	М	C2	Br	Н	
119	-0.335 93	1.293 08	0.517 22	1.003 94	0.193 21	72.392 00	24.180 57	0.398 07	
120	-0.332 04	1.540 07	0.536 42	1.675 61	0.103 80	74.771 78	20.988 66	0.373 45	
121	-0.322 40	3.552 68	1.179 64	14.479 43	10.957 10	58.191 98	9.654 79	1.799 76	
122	-0.317 13	1.363 07	3.684 39	6.228 53	69.393 36	15.918 63	1.617 95	0.610 20	
123HO	-0.314 44	4.211 74	1.267 02	19.514 79	8.170 88	59.731 71	5.323 48	1.649 29	
124LU	0.066 94	2.403 19	12.816 97	1.675 56	77.121 38	2.216 66	0.042 72	0.554 53	
125	0.108 28	23.586 14	1.360 97	5.558 20	0.616 48	66.394 73	1.522 75	0.953 28	
126	0.113 20	1.274 87	0.519 96	2.150 34	0.373 89	92.164 54	1.805 26	1.700 31	
127	0.117 55	2.763 34	0.718 94	2.035 28	0.528 81	88.833 75	2.644 95	2.466 74	
128	0.119 59	0.858 90	0.220 26	2.266 89	0.218 45	93.143 16	1.625 04	1.657 97	

图 5 化合物1的前沿分子轨道示意图 Fig.5 Schematic diagram of frontier molecular orbital for compound 1

Fig.6 Schematic diagram of frontier molecular orbital for compound **2**

稳定;三是配体的苯乙烯基的共轭离域性和稳定性 良好。比较HOMO与LUMO的各类原子轨道成份, 可以看出,当电子从HOMO激发到LUMO轨道时, 其它原子上的电子都集中向配体转移,配体的羧基 既是电子转移的桥梁也是电子转移的部分受体,而 苯乙烯基则是电子转移的主要受体。

2.4 热稳定性分析

热稳定性分析结果如图7所示。在160℃之前,化合物1几乎没有失重;从160℃起化合物开始 缓慢失重,到200℃时化合物开始快速失重,到 390℃时失重变缓,至650℃时失重基本停止,残留 质量最后稳定在18.28%。总计失重81.72%,残余物 可被假定为SnO₂,与19.94%的计算值基本吻合。对 于化合物2,在170℃之前,其几乎没有失重;从 170℃开始化合物快速失重,到380℃时失重变缓, 至620℃时失重基本停止,残留质量最后稳定在 18.06%。总计失重81.94%,残余物可被假定为 SnO₂,与19.42%的计算值基本吻合。

图7 化合物1和2的热分析曲线

2.5 抗肿瘤活性

测试了化合物1和2对MCF-7、A549和H460的体外生长抑制活性,结果见表5。发现化合物1和2

表5 化合物1和2对体外肿瘤细胞的IC₅₀

 Table 5
 IC₅₀ of compounds 1 and 2 on tumor cells in vitro

umo	$1 \cdot L^{-1}$
pointo	

Compound	MCF-7	A549	H460
1	0.56±0.34	0.26±0.09	0.70±0.38
2	0.21±0.03	0.19 ± 0.00	0.42±0.21

对所研究癌细胞均显示了较强的抑制活性。化合物更多的生物活性有待进一步研究

3 结 论

以甲醇为溶剂,在微波溶剂热条件下,合成了2 个三(邻溴苄基)锡羧酸酯:三(邻溴苄基)锡噻吩2-甲 酸酯和三(邻溴苄基)锡肉桂酸酯。体外抗癌活性测 试表明2个化合物对人乳腺癌细胞(MCF-7)、人非小 细胞肺癌细胞(A549)和人大细胞肺癌细胞(H460)均 显示出较强的抑制活性。

参考文献:

- [1]郑荣寿, 孙可欣, 张思维, 曾红梅, 邹小农, 陈茹, 顾秀瑛, 魏文强,
 赫捷. 2015年中国恶性肿瘤流行情况分析. 中华肿瘤杂志, 2019,
 41(1):19-28
 - ZHENG R S, SUN K X, ZHANG S W, ZENG H M, ZOU X N, CHEN R, GU X Y, WEI W Q, HE J. Report of Cancer Epidemiology in China, 2015. *Chinese Journal of Oncology*, **2019,41**(1):19-28
- [2]Zaki M, Hairat S, Aazam E S. Scope of Organometallic Compounds Based on Transition Metal-Arene Systems as Anticancer Agents: Starting from the Classical Paradigm to Targeting Multiple Strategies. *RSC Adv.*, 2019,9(6):3239-3278
- [3]Kenny R G, Marmion C J. Toward Multi Targeted Platinum and Ruthenium Drugs - A New Paradigm in Cancer Drug Treatment Regimens. Chem. Rev., 2019,119(2):1058-1137
- [4]Vieira F T, Lima G M, Maia J R S, Speziali N L, Ardisson J D, Rodrigues L, Junior A C, Romero O B. Synthesis, Characterization and Biocidal Activity of New Organotin Complexes of 2-(3-Oxocyclohex-1-enyl)benzoic Acid. *Eur. J. Med. Chem.*, **2010**,**45**(3):883-889
- [5]Xiao X, Liang J W, Xie J Y, Liu X, Zhu D S, Dong Y. Organotin(W) Carboxylates Based on 2-(1,3-Dioxo-1H-benzo[de]-isoquinolin-2(3H)yl)acetic Acid: Syntheses, Crystal Structures, Luminescent Properties and Antitumor Activities. J. Mol. Struct., 2017,1146:233-241
- [6]Yusof E N M, Latif M A M, Tahir M I M, Sakoff J A, Veerakumarasivam A, Page A J, Tiekink E R T, Ravoof T B S A. Homoleptic Tin (N) Compounds Containing Tridentate ONS Dithiocarbazate Schiff Bases: Synthesis, X - ray Crystallography, DFT and Cytotoxicity Studies. J. Mol. Struct., 2020,1205:127635-127643
- [7]He T F, Zhang F X, Yao S F, Zhu X M, Sheng L B, Kuang D Z, Feng Y L, Yu J X, Jiang W J. Synthesis, Structure and Biological Activities of a Novel Anionic Organotin (W) Complex {[(p-ClC₆H₄CH₂)Sn(H₂O)(Cl)₂ OCOCH(O)CH(O)CO₂Sn(H₂O)(Cl)₂(p-ClC₆H₄CH₂)] • 2(HNEt₃)}. Chin. J. Struct. Chem., **2018.37**(12):1899-1906
- [8]Zhang F X, Wu Q, Kuang D Z, Yu J X, Jiang W J, Zhu X M. Synthesis, Crystal Structure and Properties of a Triphenyltin Schiff Complex with Salicylidene-2-aminophenol. *Chin. J. Struct. Chem.*, **2018**,**37**(2): 270-276
- [9]Attanzio A, D'Agostino S, Busà R, Frazzitta A, Rubino S, Girasolo M A, Sabatino P, Tesoriere L. Cytotoxic Activity of Organotin(N) Derivatives with Triazolopyrimidine Containing Exocyclic Oxygen Atoms. *Molecules*, 2020,25(4):859-875
- [10]Kumari R, Banerjee S, Roy P, Nath M. Organotin(N) Complexes of

NSAID, Ibuprofen, X - ray Structure of Ph₃Sn(IBF), Binding and Cleavage Interaction with DNA and *In Vitro* Cytotoxic Sudies of Several Organotin Complexes of Drugs. *Appl. Organomet. Chem.*, **2020**, **34**(1):e5283-e5306

- [11]Liu J, Lin Y C, Liu M, Wang S Q, Li Y X, Liu X C, Tian L J. Synthesis, Structural Characterization and Cytotoxic Activity of Triorganotin 5-(Salicylideneamino)salicylates. *Appl. Organomet. Chem.*, 2019, 33(3):e4715-e4724
- [12]Shu S, Zhang F X, Tang R H, Yan S Y, Zhu X M, Sheng L B, Kuang D Z, Feng Y L, Yu J X, Jiang W J. Syntheses, Structures and Antitumor Activities of Tri(*o*-bromobenzyl)tin Diethyldithiocarbamate and Tri(*m*-fluorobenzyl)tin Pyrrolidine Dithiocarbamate. *Chin. J. Struct. Chem.*, 2020,39(3):459-466
- [13]闫文华,康万利,李金环.二正丁基锡二2-(2-甲酰基苯氧基)乙酸 酯的合成、晶体结构及杀菌活性.应用化学,2007,24(6):660-664 YAN W H, KANG W L, LI J H. Synthesis, Crystal Structure and Antibacterial Activity of Di-*n*-butyltin Di-2-(2-formylphenoxy) Acetate. Chinese Journal of Applied Chemistry, 2007,24(6):660-664
- [14]Ruan B F, Tian Y P, Zhou H P, Wu J Y, Hu R T, Zhu C H, Yang J X, Zhu H L. Synthesis, Characterization and *In Vitro* Antitumor Activity of Three Organotin (N) Complexes with Carbazole Ligand. *Inorg. Chim. Acta*, **2011**,**365**(1):302-308
- [15]冯泳兰, 邝代治, 张复兴, 庾江喜, 蒋伍玖, 朱小明. 两个具有 Sn₄O₄梯状结构二丁基锡羧酸酯的微波溶剂热合成、结构和体外 抗癌活性. 无机化学学报, **2017**,**33**(5):830-836 FENG Y L, KUANG D Z, ZHANG F X, YU J X, JIANG W J, ZHU X M. Two Di-*n*-butyltin Carboxylates with a Sn₄O₄ Ladder-like Framework: Microwave Solvothermal Syntheses, Structures and *In Vitro* Antitumor Activities. *Chinese J. Inorg. Chem.*, **2017**,**33**(5):830-836
- [16]Zhang J H, Zhang R F, Ma C L, Wang D Q, Wang H Z. New Organotin Carboxylates Derived from 6-Chloro-3-pyridineacetic Acid Exhibiting Discrete Molecular, Drum-like, Linear Polymeric and Ladder Structures Constructed from Dimeric Tetraorganodistannoxane Units. *Polyhedron*, **2011**,**30**(4):624-631
- [17]Airapetyan D V, Petrosyan V S, Gruener S V, Zaitsev K V, Arkhipov D E, Korlyukov A A. Disproportionation Reactions within the Series of Coordinated Monoorganostannanes. J. Organomet. Chem., 2013, 747:241-248
- [18]Iqbal M, Ali S, Muhammad N, Parvez M, Langer P, Villinger A. Synthesis, Characterization, Crystal Structures and Electrochemical Studies of Organotin (W) Carboxylates. J. Organomet. Chem., 2013, 723:214-223

[19]邝代治, 庾江喜, 冯泳兰, 朱小明, 蒋伍玖, 张复兴. 大环超分子二 (三环己基锡)吡啶-二甲酸酯的合成、结构和抗癌活性. 无机化学 学报, 2018,34(6):1035-1042 KUANG D Z, YU J X, FENG Y L, ZHU X M, JIANG W J, ZHANG F X. Syntheses, Structures and *In Vitro* Antitumor Activity of Bis(tricyclohexyltin) Pyridinedicarboxylate with Macrocyclic Supramolecular Structure. *Chinese J. Inorg. Chem.*, 2018,34(6):1035-1042

[20]张复兴,王剑秋, 邝代治, 冯泳兰, 张志坚, 许志锋, 张可. 微波固相合成三(邻氯苄基)锡肉桂酸酯及其结构与量子化学研究. 无机化学学报, 2011,27(6):1111-1115

ZHANG F X, WANG J Q, KUANG D Z, FENG Y L, ZHANG Z J, XU Z F, ZHANG K. Microwave Assisted Solid-State Synthesis, Crystal Structure and Quantum Chemistry of the Tri(*o*-chlorobenzyl)tin Cinnamate. *Chinese J. Inorg. Chem.*, **2011**,**27**(6):1111-1115