Si掺杂调控15-冠-5配位Li⁺机理的理论研究

梁苏卓成¹ 姬国勋^{*,1} 孙新利¹ 李国东¹ 张仕通^{*,2} (¹火箭军工程大学,西安 710025) (²苏州大学放射医学与辐射防护国家重点实验室,放射医学及交叉学科研究院, 江苏省高校放射医学协同创新中心,苏州 215123)

摘要:基于密度泛函理论研究了以—SiMe₂—SiMe₂—单元或—CH₂—SiMe₂—单元取代—CH₂—OH₂—O方式调控15-冠-5配位 Li*性能的机理。结果表明掺杂Si能够增大冠醚的尺寸,并且通过不同的掺杂方式可以有效增强/减弱冠醚配位Li*的能力。分 子中的原子(AIM)理论的电子密度拓扑分析和对称匹配微扰理论(SAPT)能量分解分析表明,冠醚与Li*的相互作用本质为伴随 少量轨道极化和电子转移的离子-偶极相互作用。由于Si的电子比C更容易被O和Li*极化,因此Si掺杂能够增强冠醚-Li*之 间的静电相互作用和诱导相互作用,但自然布居分析表明,若掺杂之后冠醚环内存在Si—O—Si单元,整体上将使O难以充分 极化Si的电子,同时导致带正电的Si与Li*距离更近,因此不利于冠醚配位Li*。

关键词:冠醚;吸附;密度泛函理论;锂离子;硅;杂原子
中图分类号:0641.3;0614.111
文献标识码:A
文章编号:1001-4861(2021)11-2037-10
DOI:10.11862/CJIC.2021.236

Theoretical Studies on Mechanism of 15-Crown-5 Coordinating with Li⁺ Regulated by Si Doping

LIANG Su-Zhuo-Cheng¹ JI Guo-Xun^{*,1} SUN Xin-Li¹ LI Guo-Dong¹ ZHANG Shi-Tong^{*,2} (¹Rocket Force University of Engineering, Xi'an 710025, China) (²State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China)

Abstract: This study mainly focused on the effect of substituting $-CH_2-CH_2$ with $-SiMe_2-SiMe_2$ or $-CH_2-SiMe_2$ on the coordination ability of 15-crown-5 with Li⁺ based on density functional theory calculations. The results show that Si doping can not only lead to increased size of crown ethers, but can also effectively regulate the coordination ability of crown ethers with Li⁺ by tuning the doping level and position. Atoms in molecules (AIM) analysis of electron density and symmetry-adapted perturbation theory (SAPT) energy decomposition analysis indicate that the interactions between the intrinsic/Si-doped crown ethers and Li⁺ are essentially ion-dipole interactions, accompanied by slight orbital polarization and electron transfer. Since the electrons of Si are polarized more easily by O and Li⁺ than those of carbon atoms, Si doping can thus enhance the electrostatic and induction interactions between crown ethers and Li⁺. However, natural population analysis demonstrates that if the Si doping introduces Si-O-Si structures into the crown ethers, it could prevent O from fully polarizing the electrons of Si, and results in a closer distance between positively charged Si and Li⁺, thereby impeding the coordination of crown ethers with Li⁺.

Keywords: crown ether; adsorption; density functional theory; lithium ion; silicon; heteroatom

收稿日期:2021-05-25。收修改稿日期:2021-08-26。

国家自然科学基金(No.22076219)资助。

^{*}通信联系人。E-mail:ji_guoxun@sina.com,zhangshitong@suda.edu.cn

冠醚是一种拥有环状结构和纳米级孔穴的大 环聚醚化合物,其化学通式为(CH,CH,O),。根据环 内C和O的个数,常见的冠醚有12-冠-4、15-冠-5和 18-冠-6等。由于冠醚的外部骨架表现为疏水性质, 而环内的氧原子往往具有很强的负电性,因此该类 化合物对金属离子的选择性配位能力较强,在离子 识别、同位素分离和催化反应等领域得到了广泛的 应用[1-3]。此外,对冠醚进行原子掺杂、引入官能团、 连接功能性侧链等结构修饰能够改变其物理化学 性质,可以进一步拓宽其应用领域。例如,田欢等[4] 研究了4,13-二硫杂苯并-18-冠-6对软酸Ag+的选择 性配位能力。结果表明在多种离子(Cu²⁺、Pb²⁺、Zn²⁺、 Ni²⁺)共存的复杂体系中,4,13-二硫杂苯并-18-冠-6 对Ag⁺的萃取效率高达95%。缪谦等^[5]以单体1,4-二溴-2,3-萘-18-冠-6和1,4-二乙烯基-2,5-二丁氧基 苯通过 Pd 催化的 Heck 偶联反应合成了一种能够发 射蓝绿色荧光的共轭高分子。通过荧光和紫外-可 见光谱测试,他们发现这种共轭高分子能够有效识 别Hg²⁺。

Si与C为同主族的元素,其原子半径大于C,电 负性小于C,因此通过Si掺杂的方式能够有效地调 控冠醚的骨架及其电子结构性质。在相当长的一 段时期内,Si杂冠醚配位金属离子的能力被认为弱 于未掺杂的冠醚^[6]。这一结论的局限性在于其仅考 虑了利用—SiMe2—单元取代—CH2—CH2—的掺杂 方式,这种Si掺杂的方法会减少环上的原子数,形 成缩环冠醚;而无论是否含有Si原子,缩环冠醚配 位金属离子的能力均不如原始的冠醚^[7]。近年来, von Hänisch 及其合作者^[8-11]报道了一系列含有 —SiMe2—SiMe2—单元的Si杂冠醚,并通过理论结 合实验的方法研究了该类结构对金属离子的配位 能力。结果表明,Si对冠醚和冠醚-离子配合物的 结构有明显的影响,部分Si杂冠醚配位金属离子的 能力比未掺杂的冠醚更强。

尽管 von Hänisch 及其合作者的工作为调控冠 醚的金属离子配位性能提供了新的思路,但目前关 于通过掺杂—SiMe₂—SiMe₂—单元调控冠醚金属离 子配位性能的研究仍未能系统地揭示其中的调控 规律和内在机理。例如,掺杂数量及相对位置对冠 醚配位金属离子性能的影响机制尚未被深入理解; 对—SiMe₂—SiMe₂—单元掺杂的冠醚与金属离子间 相互作用机理的认识还不够清晰,导致对Si杂冠醚 配位金属离子的功能调控和结构设计缺乏有效的 理论指导原则。锂在电池、冶金及医疗行业中应用 广泛,因此针对锂设计与开发性能良好的冠醚类配 位剂具有一定的科学意义及工程价值^[12]。鉴于此, 我们以15-冠-5配位碱金属离子Li⁺为研究模型,利 用密度泛函理论(DFT)计算—SiMe₂—SiMe₂—单元的 掺杂数量(1~5组)和掺杂位置对冠醚结构的影响规 律,并深入探讨了—SiMe₂—SiMe₂—单元影响冠醚-Li⁺相互作用的机理。另外,考虑到Si掺杂结构存在 更多的可能性,我们还研究了掺杂1组—CH₂— SiMe₂—单元的结构,作为对—CH₂—SiMe₂—掺杂方 式的初步探索。

1 模型与计算方法

15-冠-5的环上含有5组—CH₂—CH₂—单元。 我们充分考虑了1~5组—SiMe₂—SiMe₂—单元掺杂 取代—CH₂—CH₂—单元的情况。掺杂2组和3组 —SiMe₂—SiMe₂—单元时会分别产生2种构造异构 体,我们也进行了相应的讨论。另外,虽然以 —CH₂—SiMe₂—单元取代—CH₂—CH₂—单元的掺 杂方式在冠醚的修饰中还未见报道,但是研究者们 已经能够合成种类丰富的、含有—CH₂—SiMe₂— O—单元的稳定环状化合物^[13-14],说明Si杂冠醚的结 构存在更多的可能性。因此,作为理论研究,我们 还构建了含有1组—CH₂—SiMe₂—单元的结构。综 上所述,本工作共研究9种冠醚(即15-冠-5,下同)的 结构式,包含1种未掺杂的冠醚和8种Si杂冠醚 结构。

为了得到准确的分子构象,我们使用 Gaussian 09 程序,结合 B3LYP 泛函^[15]和 Grimme 开发的 DFT-D3 (BJ)色散矫正方法^[16],选择 2-zeta 基组 Def2-SVP^[17-18] 进行了冠醚和冠醚-Li*配合物的分子几何结构优化 和振动频率计算,并在默认温度 298.15 K下计算了 吉布斯自由能的热力学校正值。每个优化所得的 结构均没有虚频以保证得到的结构对应势能面上 的稳定点。基于稳定的波函数和自然布居分析(natural population analysis, NPA)计算了原子电荷^[19],并 使用 Multiwfn 程序^[20]基于分子中的原子理论(atoms in molecules, AIM)进行了电子密度拓扑分析^[21]。为 了确保能量计算的精度,使用 3-zeta 基组 Def2-TZVP^[17-18]进行单点能计算,并结合 counterpoise 方 法^[22]矫正了基组重叠误差。

气相条件下的冠醚-Li⁺配位反应的吉布斯自由 能变(ΔG_{as} , kJ·mol⁻¹)计算基于式1进行: $\Delta G_{gas} = G_{gas}(comp) - G_{gas}(cro) - G_{gas}(Li^{+})$ (1) 其中 $G_{gas}(comp) \setminus G_{gas}(cro) \pi G_{gas}(Li^{+})$ 分别表示气相条件 下冠醚-Li⁺配合物、自由冠醚和Li⁺的吉布斯自由能。 溶剂条件下的冠醚-Li⁺配位反应的吉布斯自由能变 ($\Delta G_{sal}, kJ \cdot mol^{-1}$)计算基于式2进行:

 $\Delta G_{sol} = G_{sol}(\text{comp}) - G_{sol}(\text{cro}) - G_{sol}(\text{Li}^+)$ (2) 其中 G_{sol} 表示相应的物质在溶剂条件下的吉布斯自 由能(kJ·mol⁻¹),其计算基于式**3**。溶剂条件的等效 使用了 SMD 隐式溶剂模型^[23]。

$$G_{\rm sol} = G_{\rm gas} + E_{\rm sol} - E_{\rm gas} + 7.90 \tag{3}$$

值得注意的是,在B3LYP优化结构的基础上, 此处气相条件下的单点能*E*_{gas}和溶剂模型下的单点 能*E*_{sol}计算级别为M05-2X/6-31G(d)^[24-26],这一策略可 以更为准确地描述构象在溶剂中的自由能,因此在 相关领域的研究中被广泛采用^[27]。

冠醚的几何形变能(*E*_{geom})表示冠醚从自由状态 下的构型形变为配合物中的构型所需要消耗的能 量。*E*_{geom}的计算基于式4进行:

*E*_{geom}=*E*(crodis)-*E*(cro)
 (4)

 其中 *E*(crodis)和 *E*(cro)分别代表形变后的和自由的

冠醚的单点能。 冠醚-Li⁺的相互作用能(*E*_{int})的计算基于式**5**进行:

 $E_{int} = E(\text{comp}) - E(\text{crodis}) - E(\text{Li}^{+})$ (5)

其中E(comp)和 $E(\text{Li}^{+})$ 分别表示冠醚-Li⁺配合物和Li⁺的单点能。

为了更加深入地理解冠醚和Li⁺之间相互作用 的类型,本工作进一步将*E*_{int}按式**6**分解:

$$E_{\rm int} = E_{\rm elst} + E_{\rm ind} + E_{\rm exch} + E_{\rm disp} \tag{6}$$

其中,等式右侧 E_{elst}、E_{ind}、E_{exch}和 E_{disp}分别代表静电相 互作用、诱导相互作用、交换互斥作用和色散作用。 各相互作用成分的占比通过 PSI4 程序^[28]中 sSAPTO (scaled SAPTO)级别的对称匹配微扰理论分析^[29],结 合 Jun-cc-pVDZ 基组^[30-35]得到。根据 Parker 等^[36]的工 作,sSAPTO/Jun-cc-pVDZ 级别的对称匹配微扰理论 分析能够可靠地描述分子间各相互作用成分的占 比,且计算效率较高,适用于本工作中9个冠醚-Li⁺ 配合物体系的计算。

2 结果与讨论

由于冠醚骨架的柔性较大,其势能面上可能存 在多个极小值点,因此我们对每个结构都从5个初 始构象出发进行优化,而后对比所得构象在二氯甲 烷(DCM)溶剂中的吉布斯自由能,筛选出吉布斯自 由能最低的构象作为相应分子的最优构象。对于 自由冠醚(L),我们根据文献^[37]报道的15-冠-5冠醚结 构建立1个初始冠醚构象,并在此基础上创建4种 冠醚-M(M=Na⁺、K⁺、Mg²⁺、Ca²⁺)配合物模型(初始设置 M在5个O形成的平面中心,且与5个O距离相同)。 对这4种配合物模型进行结构优化计算,将优化后 构象中的金属离子去除,得到另外4种冠醚初始构 象。在这5种初始的冠醚构象的基础上,取代碳原 子并建立相应的Si掺杂模型。对于每种类型的冠 醚-Li节配合物,我们将Li节分别放置在5个冠醚初始 构象的环中5个0形成的平面中心,且与5个0距离 相同,得到5个冠醚-Li+初构象。而后优化并计算所 得构象在 DCM 溶剂中的吉布斯自由能,筛选出吉布 斯自由能最低的构象。图1所示为筛选得到的配位 Li⁺前后冠醚的最稳定构象。

从图中可以发现,Li*均稳定地配位在冠醚环内 位置,且造成冠醚的结构发生了明显变化。为了更 加清晰地认识冠醚的形变程度,我们定量地统计了 配位前后冠醚结构中的键长(包含C--C、Si-Si、C-0和Si-0)、键角(如C-0-C、Si-0-Si以及O-C---O)等结构特征的平均值。如表1所示,配位前后 冠醚环上的C--C、Si-Si、C-O、Si-O键长和C-0--C、C--O-Si键角仅发生了小幅度的变化,而 Si-O-Si的变化较为明显,说明冠醚的形变主要依 里值得注意的是,配位Li*之后,冠醚的形变一方面 需要吸收能量,是配合物稳定性的不利因素;另一 方面可形成良好的冠醚-Li*配位结构,是配合物稳 定性的有利因素。即配合物的结构受到冠醚本身 的形变能以及冠醚-Lit之间相互作用能的共同影 响,因此不同冠醚配位Lit产生的形变程度不同。

通过图1可以看出L-Li*中的5个O和Li*几乎分 布在同一个平面内,并且Li*位于环状结构中心位 置,主要与环内侧的O配位。由于Si—Si、Si—O键 比C—C、C—O键更长,键角C—O—Si和Si—O—Si 的角度比C—O—C更大,因此掺杂Si会增大冠醚环 的尺寸,导致掺杂1组—SiMe₂—SiMe₂—的L^{Si}-Li*、掺 杂1组—CH₂—SiMe₂—的L^{SiC}-Li*和掺杂2组 —SiMe₂—SiMe₂—的L^{SiC}-Li*和掺杂2组 —SiMe₂—SiMe₂—的L^{Si-O}-Li*、L^{2Si-M}-Li*中冠醚环产生 了扭曲。但是5个O均能与Li*靠近形成配位,且整 体上O—Li*键长较L-Li*有所缩短(表1)。继续增加 Si 的数量,由于冠醚的尺寸进一步增加,因此L^{3Si-O}- Li^{+} 、 L^{3Si-OM} - Li^{+} 和 L^{4Si} - Li^{+} 中的O3都明显远离 Li^{+} 。在所 有— CH_2 — CH_2 —都被— $SiMe_2$ — $SiMe_2$ —取代的 L^{5Si} - Li^{+} 中,O3和O5远离 Li^{+} ,剩余的3个O与 Li^{+} 成3配位 结构(图1)。

总之,9种冠醚-Li⁺配合物中的O—Li⁺配位键长 均在0.191~0.225 nm范围,与实验得到的Li(1,1,2, 2,4,4,5,5-8甲基-1,2,4,5-4硅杂-10,11-苯并-15-冠-5)I晶体中O—Li⁺配位键长(0.2016~0.2276nm)^[10] 相近,明显大于O的原子半径0.066nm^[38]与Li⁺的离 子半径0.059nm^[39]之和,因此从键长数据来看,O— Li⁺形成的是弱配位键。

由于冠醚对Li⁺的配位常在DCM 溶剂中进行,

Structures were calculated at B3LYP-D3(BJ)/Def2-SVP level, and the point groups of all the molecules are C1; Color balls: red: O, black: C, blue: Si, purple: Li

图1 DFT优化的15-冠-5配位前后的几何结构

Fig.1 DFT optimized geometric structures of 15-crown-5 before and after coordination

S	Bond length ^b / nm						Bond angle ^c / (°)					
System	С—С	Si—Si	С—О	Si—0	01—Li	02—Li	03—Li	04—Li	05—Li	С—О—С	C—O—Si	Si-O-Si
L	0.151 5	—	0.140 6	_	_	_	_	_	_	115.3	—	_
L-Li ⁺	0.150 9	—	0.141 8	—	0.209 0	0.225 0	0.219 5	0.219 5	0.225 0	114.8	—	_
$\mathrm{L}^{\mathrm{SiC}}$	0.151 6	—	0.140 8	0.168 6	_	_	—	—	—	115.3	130.6	—
L^{SiC} - Li^+	0.151 4	_	0.142 2	0.171 0	0.204 0	0.211 7	0.212 1	0.205 3	0.220 0	115.9	126.1	_
L^{Si}	0.151 8	0.234 1	0.140 8	0.169 1	_	_	—	—	_	115.3	126.5	_
$L^{Si}\text{-}Li^+$	0.151 7	0.234 3	0.142 1	0.172 7	0.217 7	0.200 2	0.213 4	0.201 8	0.205 2	116.4	125.5	_
L ^{2Si-0}	0.151 6	0.234 2	0.140 6	0.168 5	—	—	—	—	—	114.4	126.3	142.2
L^{2Si-0} - Li^+	0.152 1	0.234 9	0.142 0	0.172 2	0.202 3	0.200 7	0.213 2	0.202 3	0.214 6	117.4	125.1	136.8
L^{2Si-M}	0.151 8	0.234 2	0.140 9	0.169 0	_	_	—	—	_	114.4	126.3	_
L^{2Si-M} - Li^+	0.152 3	0.235 6	0.142 1	0.172 4	0.202 7	0.199 6	0.201 8	0.212 8	0.204 5	117.6	126.0	_
L ^{3Si-0}	0.151 5	0.234 7	0.140 6	0.168 3	—	—	—	—	—	114.8	125.6	143.3
L^{3Si-O} - Li^+	0.151 8	0.236 2	0.141 9	0.171 5	0.197 2	0.192 7	0.382 2	0.193 4	0.193 7	116.1	127.0	133.2
L ^{3Si-OM}	0.151 9	0.234 7	0.140 9	0.168 5	_	_	—	—	_	—	124.7	_
L^{3Si-OM} - Li^+	0.151 9	0.236 3	0.142 5	0.171 1	0.193 3	0.191 2	0.403 7	0.191 2	0.193 3	—	125.6	_
L^{4Si}	0.152 0	0.235 0	0.140 8	0.167 9	_	_	—	_	_	—	127.7	146.9
L^{4Si} - Li^+	0.152 3	0.235 6	0.142 7	0.171 2	0.194 6	0.193 3	0.350 8	0.192 9	0.203 5	—	124.9	134.2
L^{5Si}	—	0.235 3	—	0.167 8	_	_	—	—	—	—	—	142.1
L^{5Si} - Li^+	—	0.236 1	—	0.170 9	0.196 7	0.195 1	0.342 5	0.192 6	0.405 5	—	—	126.9

表1 自由冠醚及冠醚-Li*配合物的几何结构参数 Table 1 Geometrical parameters of free crown ethers and crown-Li⁺ complexes^a

^a Calculated at the B3LYP-D3(BJ)/Def2-SVP level; ^b C—C, Si—Si, C—O and Si—O in the bond length part are the average bond lengths of the corresponding chemical bonds on the crown ether ring, and On—Li⁺ (*n*=1, 2, 3, 4, 5) is the distance between the corresponding numbered O and Li⁺; ^c C—O—C, C—O—Si and Si—O—Si in the bond angle part are the average bond angles of the C—O—C, C—O—Si and Si—O—Si and Si—O—Si units, where only the O coordinated with Li⁺ is taken into consideration, and the O uncoordinated with Li⁺ is not included in the statistical range.

且 von Hänisch 等[8-11]的工作表明 DCM 也可以作为 Si 杂冠醚的溶剂。因此为了比较9种冠醚配位Lit的 能力,我们分别计算了气相条件下和DCM 溶剂条件 下冠醚-Li+配位反应的吉布斯自由能变,结果如图2 所示。从图2可以发现,气相条件下,L^{si}、L^{25i-M}、 L^{3Si-OM}、L^{4Si}配位Li⁺的能力在热力学上比L更具优势, L²⁵ⁱ⁻⁰配位Li⁺的能力与L相差不大,L^{sic}、L³⁵ⁱ⁻⁰和L⁵⁵ⁱ配 位Li⁺的能力比L更弱,说明掺杂Si能够在热力学上 有效调控冠醚配位Li*的能力,调控的效果受掺杂数 量、掺杂相对位置的影响。在DCM溶剂条件下的冠 醚-Lit配位反应在热力学上的可行性被明显削弱, 这主要是由于在溶剂中Lit会与溶剂分子形成团簇, 而冠醚配位Li+导致一部分溶剂分子被脱除,这个过 程会消耗能量[40]。通过对比气相条件下和 DCM 溶 剂条件下的数据可知,9种冠醚与Li+的配位反应的 热力学可行性被削弱的程度不同,并且整体上Si杂 冠醚被削弱得更明显。在 DCM 溶剂条件下, 仅 L^{3Si-OM}对Li⁺的配位强于L,相应配位吉布斯能比L-Li⁺

低4.60 kJ·mol⁻¹。据报道,von Hänisch及其合作者^[9] 通过实验观察到在DCM溶剂中,通过Si掺杂12-冠-4 形成1,1,2,2-4甲基-1,2-2硅杂-12-冠-4,也可以增

 ΔG were calculated at the B3LYP-D3(BJ)/Def2-SVP//Def2-TZVP level

图2 冠醚-Li⁺配位反应的吉布斯自由能变

Fig.2 Gibbs free energy changes of crown ether-Li⁺ coordination reactions

强冠醚对Li⁺的配位能力。这些结果说明通过掺杂 Si能够有效调控冠醚在气相和溶剂条件下配位金属 阳离子的能力。 为了进一步揭示冠醚中O—Li*的成键本质,以及Si影响冠醚-Li*相互作用的机理,我们对9种冠醚-Li*配合物进行了电子密度AIM 拓扑分析(表2)。表

System	Bond	0 / a.u.	$\nabla^2 \rho / a.u.$	H/a.u.	V / K
L-Li ⁺	01—Li+	0.018 8	0.119 7	0.005 4	0.780
	02—Li+	0.013 1	0.078 1	0.003 2	0.804
	03—Li+	0.014 9	0.089 2	0.003 7	0.796
	O4—Li+	0.014 9	0.089 2	0.003 7	0.796
	O5—Li⁺	0.013 1	0.078 2	0.003 2	0.804
L ^{SiC} -Li ⁺	O1—Li+	0.021 7	0.141 6	0.006.5	0.775
	02—Li+	0.018 4	0.113 7	0.004 8	0.796
	03—Li+	0.018 1	0.111.6	0.004 7	0.796
	04—Li+	0.021 8	0.136.3	0.006 0	0.787
	05—Li ⁺	0.015.0	0.089.2	0.003.6	0.808
L ^{Si} -Li ⁺	01—Li ⁺	0.015.9	0.095.0	0.003.8	0.809
	02—Li ⁺	0.024.4	0.161.2	0.007.4	0.772
	03—Li ⁺	0.017.5	0.109.0	0.004.6	0.797
	04—Li ⁺	0.023.9	0.153.1	0.006.8	0.783
	05—Li ⁺	0.021 7	0.136.7	0.006.0	0.787
I 2Si-0_I i+	01—Li ⁺	0.023 5	0.148.0	0.006.4	0.788
	01 Ei	0.023 5	0.158.6	0.007 1	0.782
	02 Ei	0.017.9	0.108 7	0.004 5	0.802
	04—Li ⁺	0.023 5	0.151.2	0.004 5	0.781
	05—Li ⁺	0.017.1	0.103.8	0.004.2	0.806
I 2Si-M I ;+	01-Li ⁺	0.023 4	0.148 5	0.004 2	0.788
L -Li	01 El	0.023 4	0.148.3	0.007 5	0.788
	02 Li	0.024 8	0.152 4	0.007 5	0.779
	04-Li+	0.018 1	0.100 8	0.000 5	0.804
	04 Li	0.022.2	0.140.1	0.004 3	0.789
I 3Si-0 I :+	05 Li	0.022.2	0.176.2	0.007.0	0.789
L' -LI	01—Li	0.027 0	0.170 2	0.007 9	0.782
	02—Li*	0.030 2	0.204 6	0.009 5	0.775
	03 Li	0.028.5	0 200 8	0.000.0	0.757
	04—Li	0.028 3	0.200.8	0.009 9	0.737
I 3Si-OM I :+	03—Li*	0.029 4	0.201 3	0.009 4	0.770
L'es en-FI.		0.029 7	0.203 9	0.009 3	0.769
	02—Li ⁺	0.031 /	0.218 0	0.010 2	0.770
				-	
	04—Li ⁺	0.031 /	0.218 0	0.010 2	0.770
I 45i I '+	05—Li*	0.029 6	0.203 7	0.009 5	0.771
$L^{+,n}$ - Li^+	01—Li+	0.029 0	0.193 9	0.008 9	0.775
	02—Li ⁺	0.029 6	0.201 9	0.009 5	0.766
	03—Li ⁺	_	_	-	
	O4—Li ⁺	0.029 9	0.203 2	0.009 4	0.771
	05—Li+	0.022 8	0.144 1	0.006 2	0.792

表 2 O—Li^{*}配位键 BCP 处拓扑电子密度性质 Table 2 Topological electron density properties at BCP of O—Li^{*} coordination bond*

续表2					
L ^{5Si} -Li ⁺	01—Li+	0.027 3	0.177 4	0.008 0	0.780
	O2—Li+	0.028 5	0.186 4	0.008 5	0.780
	03—Li+	—	_	—	—
	O4—Li+	0.030 5	0.204 5	0.009 4	0.775
	05—Li+	_	_	_	_

* Wave functions used for the AIM topological analysis were calculated at the B3LYP-D3(BJ)/Def2-SVP level.

2的数据显示,每一个相互靠近形成配位的0-Li⁺ 之间都出现了键临界点(BCP),而相互远离的O-Li* 之间没有 BCP。BCP上的电子密度(p)、电子密度的 拉普拉斯函数(∇²ρ)、电子能量密度(H)和电子势能密 度绝对值(IVI)与动能密度(K)的比值(IVI/K)能够用于 判断成键原子之间的相互作用类型。对于共价作 用,原子间存在定域性强的共用电子对,BCP处通常 对应∇²ρ<0、H<0、W/K>2,且ρ>0.14 a.u.的性质^[41-43]。 而对于闭壳层作用(非共价作用),原子间没有共用 电子对,BCP处通常具有∇²ρ>0、H>0、W/K<1,且ρ< 0.14 a.u.的性质。通过表2可以看出,所有0-Li*的 BCP处的ρ都很小(不超过0.04 a.u.),且∇²ρ>0、H>0、 Ⅳ/K<1,具有明显的非共价作用特征,即Li⁺对O电 子的极化效应较弱,不足以使0与Lit之间形成共用 电子对。因此,9种冠醚与Li*形成的O-Li*配位键 本质上是闭壳层相互作用。

为了深入理解掺杂Si对冠醚与Li⁺之间的相互 作用强度的影响,我们在B3LYP-D3(BJ)/Def2-TZVP 级别计算了冠醚-Li⁺的相互作用能以及冠醚的形变 能,并在sSAPTO/Jun-cc-pVDZ级别进行了相互作用 能能量分解分析以研究其中各相互作用成分的占 比及变化,数据展示在表3中。其中,*E*_{elat}描述冠醚- Li*配合物中,冠醚与Li*的电子密度互不影响的情况 下相互之间的静电作用;*E*_{ind}通常用来描述轨道极化 和电子转移产生的诱导相互作用;*E*_{exch}用于描述冠 醚与Li*之间,由于占据态轨道间 Pauli 排斥作用导 致的配合物整体能量升高;*E*_{disp}用来描述冠醚与Li* 之间的色散相互作用。

结果显示,2种级别下计算得到的冠醚-Li*相互 作用能大小基本一致。掺杂1组—CH,—SiMe,—的 L^{sic} 与Li⁺的相互作用比L更强(ΔE_{int} =28.93 kJ·mol⁻¹), 掺杂1组-SiMe,-SiMe,一的L^{si}与Li⁺的相互作用比 L 更 强 (ΔE_{int}=41.38 kJ·mol⁻¹), 表 明 以 —SiMe₂— SiMe,一单元或一CH,一SiMe,一单元取代一CH,一 CH,一单元能够增强冠醚与Li⁺的相互作用。掺杂2 组—SiMe,—SiMe,—的L^{2Si-M}与Li⁺的相互作用强度得 到了进一步的提升,比掺杂1组-SiMe,-SiMe,-的 L^{si} 更强($\Delta E_{i,i}$ =21.40 kJ·mol⁻¹)。然而, L^{2si-0} 与Li⁺的相 互作用强度较L^{si}并没有明显的优势,证明当掺杂多 组—SiMe,—SiMe,—时,掺杂的相对位置对冠醚结 合Li⁺的能力有一定影响。继续掺杂更多的—SiMe,— SiMe,一会导致Li*配位数减少。尽管如此,与Li*形 成4配位的L^{3Si-0}、L^{3Si-0M}和L^{4Si}与Li⁺的相互作用依旧 比L更强。L^{5si}由于仅能与Li⁺形成3配位结构,与Li⁺

表 3 冠醚-Li⁺相互作用能及能量分解 Table 3 Crown-Li⁺ interaction energies and energy decompositions*

System	$E_{\rm int}/(\rm kJ{\boldsymbol \cdot}\rm mol^{-1})$	$E_{\rm elst} / (\rm kJ {\boldsymbol \cdot} mol^{-1})$	$E_{\rm ind}/(\rm kJ{\scriptstyle \bullet}\rm mol^{-1})$	$E_{\rm exch}/(\rm kJ{\scriptstyle \bullet}\rm mol^{-1})$	$E_{\rm disp}/(\rm kJ{\color{red}\cdotmol^{-1}})$	$E_{\rm geom}$ / (kJ·mol ⁻¹)
L-Li ⁺	-497.42	-390.66	-152.19	48.15	-2.72	59.65
L^{SiC} - Li^+	-526.35	-418.13	-179.03	74.65	-3.85	100.19
L^{Si} - Li^+	-538.80	-425.69	-192.15	87.19	-4.39	84.23
L ^{2Si-O} -Li ⁺	-540.98	-416.45	-215.56	96.01	-4.97	98.10
L^{2Si-M} - Li^+	-560.20	-441.41	-214.35	100.65	-5.10	96.98
L ^{3Si-O} -Li ⁺	-524.13	-415.95	-232.83	130.46	-5.77	92.88
L^{3Si-OM} - Li^+	-533.45	-454.12	-215.02	136.85	-1.17	77.83
L^{4Si} - Li^+	-531.82	-413.86	-239.47	127.32	-5.81	79.42
L ^{5Si} -Li ⁺	-481.62	-360.36	-224.34	104.12	-1.05	81.34

* E_{int} and E_{geom} were calculated at the B3LYP-D3(BJ)/Def2-TZVP level; E_{int} was decomposed into E_{elst} , E_{ind} , E_{exch} and E_{disp} at the sSAPT0/Jun-cc-pVDZ level, by calculating the proportion of each term.

报

的相互作用强度比L更弱。另外,数据显示掺 杂—SiMe₂—SiMe₂—或—CH₂—SiMe₂—也会增加冠 醚的形变能,扣除形变能后L^{Si}、L^{2Si-0}、L^{2Si-M}、L^{3Si-OM}和 L^{4Si}的 E_{int} 较L分别有16.80、5.10、25.46、17.85、14.63 kJ·mol⁻¹的优势。

能量分解结果表明,冠醚-Li⁺相互作用中静电 相互作用的占比最大,诱导相互作用的占比较低, 色散作用仅起到微弱的贡献。结合电子密度 AIM 拓扑分析的结果,可以证明冠醚与Lit的相互作用本 质是伴随少量轨道极化和电子转移的离子--偶极相 互作用。掺杂Si对静电相互作用和诱导相互作用 有一定增强效果,交换互斥作用也随着Si数量的增 加而增强。另外,由于Si的引入,色散相互作用也 得到了略微增强,而L^{3Si-OM}-Li⁺和L^{5Si}-Li⁺中色散相互 作用较弱的原因是L^{3Si-OM}-Li⁺中的O3,L^{SSi}-Li⁺中的O3 和05与邻近的Si一起远离Li⁺。诱导相互作用的增 强一方面来源于掺杂Si导致的O-Li*距离缩短,另 一方面源于Si的电子比C更易被极化。交换互斥作 用的增强主要是由于0与Li节距离缩短,以及冠醚环 发生扭曲导致的Lit在整体上与冠醚框架距离更近。 掺杂-SiMe,-SiMe,-的相对位置对冠醚-Li⁺相互 作用的影响主要体现在静电相互作用项。

我们对9个冠醚-Li节体系进行了NPA以进一步

研究掺杂Si调控冠醚-Li*静电相互作用的机理, 结果列在表4中。数据显示,冠醚中的0带有负电 荷,并且与Si相邻的O带有明显更多的负电荷,说明 电负性低的Si向相邻的O转移了更多的电子,从而 使 0 与 Li⁺产生了更强的静电吸引。而 L^{2Si-M}-Li⁺ 和 L^{3Si-OM}-Li⁺中5个0的电荷总量大于 L^{2Si-O}-Li⁺和 L^{3si-0}-Li⁺,说明当掺杂Si的数量相同时,使更多的O 与Si相邻能够让O更加充分地从Si获得电子。此 外,由于C几乎不带电荷,而Si带有正电荷,说明掺 杂Si后,Si与Lit之间的静电互斥会在一定程度上抵 消0与Lit之间的静电吸引作用,这个现象也存在 于-SiMe,一取代-CH,一CH,一的冠醚中,并导致 了这类冠醚配位金属离子的能力被削弱[44]。而键角 Si--O--Si 大于 C--O--Si 表明 Si--O--Si 单元不利 于Si远离Li⁺,因此会导致Si与Li⁺之间的静电互斥 作用增强。

以上分析表明,Si向O转移了大量电子是增强 冠醚-Li*静电相互作用的关键因素。而当掺杂Si的 数量相同时,使更多的O与Si相邻,减少Si-O-Si 单元,能在整体上使O获得更多电子,并使Si更加远 离Li*,从而增强冠醚结合Li*的能力。因此根据本 工作中的计算结果,L^{25-M}和L^{35-OM}与Li*的相互作用 比L^{25-O}和L^{35-O}更强。

表4	冠醚-Li™配合物的 NPA
Table 4	NPA of crown-Li ⁺ complex*

Atom	L-Li ⁺	L^{SiC} - Li^+	$L^{\rm Si}\text{-}Li^+$	L^{2Si-0} - Li^+	L^{2Si-M} - Li^+	L ^{3Si-O} -Li ⁺	L^{3Si-OM} - Li^+	L^{4Si} - Li^+	L ^{5Si} -Li ⁺
Li+	0.866	0.861	0.855	0.855	0.869	0.889	0.885	0.890	0.896
O(total)	-3.305	-3.624	-3.920	-4.518	-4.528	-5.153	-5.178	-5.766	-6.320
01	-0.677	-0.676	-0.962	-1.270	-0.966	-1.277	-0.987	-0.984	-1.283
02	-0.653	-0.660	-0.673	-0.962	-0.975	-1.282	-0.985	-0.982	-1.285
03	-0.661	-0.659	-0.655	-0.666	-0.970	-0.921	-1.234	-1.239	-1.233
04	-0.661	-0.663	-0.661	-0.649	-0.653	-0.690	-0.985	-1.280	-1.283
05	-0.653	-0.966	-0.969	-0.971	-0.964	-0.983	-0.987	-1.281	-1.236
С	-0.066	-0.068	-0.067	-0.068	-0.068	-0.062	-0.061	-0.065	
Si	_	1.959	1.475	1.481	1.479	1.481	1.488	1.483	1.479

* Wave functions used for NPA were calculated at the B3LYP-D3(BJ)/Def2-SVP level.

3 结 论

运用密度泛函理论深入地研究了掺杂Si对15-冠-5配位Li⁺的影响。结果表明,掺杂—SiMe₂— SiMe₂—或—CH₂—SiMe₂—能够增大冠醚环的尺寸, 导致掺杂3组及以上—SiMe₂—SiMe₂—单元会降低 冠醚中0与Li⁺的配位数。通过气相条件和DCM溶 剂条件下的冠醚-Li*配位反应吉布斯自由能变计算 发现:从热力学角度出发,气相条件下L^{Si}、L^{2Si-M}、 L^{3Si-OM}、L^{4Si}配位Li*的能力比L更强,L^{2Si-O}配位Li*的能 力与L相差不大。DCM溶剂条件会削弱配位反应 的热力学可行性(相应吉布斯自由能变升高),且整 体上Si杂冠醚被削弱的程度更高。但是DCM中 L^{3Si-OM}在热力学上配位Li*的能力依旧强于L。根据 冠醚-Li⁺配合物中的电子密度 AIM 拓扑分析结果, 以及冠醚-Li*相互作用能能量分解结果,我们发现 本工作所研究的9种冠醚与Li*的相互作用本质均 为伴随少量轨道极化和电子转移的离子-- 偶极相互 作用。掺杂Si能够增强冠醚与Lit之间的静电相互 作用和诱导相互作用,但是冠醚-Li*配合物中的冠 醚环发生扭曲会增加冠醚与Li*之间的交换互斥作 用。NPA表明,电负性弱的Si向相邻的O转移了大 量的电子是-SiMe,-SiMe,-或-CH,-SiMe,一增 强冠醚与Lit之间的静电相互作用的关键因素,但同 时带正电的Si与Li*产生的静电排斥会在一定程度 上抵消 O 对 Li⁺静电吸引的优势。因此为了提高 Si 杂冠醚配位Li节的能力,需要尽量避免出现Si-O-Si结构(键角较大,会导致Si与Li节的距离缩短),从而 使Si充分远离Li⁺。最后,结合以上的分析,我们认 为要得到配位金属离子能力较强的Si杂冠醚,其分 子结构设计需要遵循以下2个规则:一是使冠醚环 的尺寸与目标离子相匹配;二是尽量避免冠醚环内 出现Si-O-Si单元。

本工作从理论机理层面验证了掺杂—SiMe₂— SiMe₂—对冠醚配位金属离子能力的调控机理,同时 对掺杂—CH₂—SiMe₂—的冠醚结构进行了探索,并 提出了Si杂冠醚分子结构设计需要遵循的规则,对 通过掺杂Si进行冠醚的结构修饰,以及有机Si化合 物与金属离子的相互作用研究提供了一定的理论 依据及研究思路。

参考文献:

- [1] Dong G C, Duan K F, Zhang Q, Liu Z Z. A New Colorimetric and Fluorescent Chemosensor Based on Schiff Base-Phenyl-Crown Ether for Selective Detection of Al³⁺ and Fe³⁺. *Inorg. Chim. Acta*, 2019,487:322
 -330
- [2] Sun Y, Zhu M Y, Yao Y L, Wang H W, Tong B H, Zhao Z. A Novel Approach for the Selective Extraction of Li⁺ from the Leaching Solution of Spent Lithium-Ion Batteries Using Benzo-15-Crown-5 Ether as Extractant. Sep. Purif. Technol., 2020,237:116325-116332
- [3] 李茹霞, 钟文彬, 谢林华, 谢亚勃, 李建荣. 金属有机框架材料对 Cr(10)离子的吸附去除研究进展. 无机化学学报, 2021,37(3):385-400

LI R X, ZHONG W B, XIE L H, XIE Y B, LI J R. Recent Advances in Adsorptive Removal of Cr(VI) Ions by Metal-Organic Frameworks. *Chinese J. Inorg. Chem.*, **2021**,**37**(3):385-400

[4] 田欢,张梦龙,王莉莎,童碧海,赵卓.4,13-二硫杂苯并-18-冠-6的 合成及对 Ag*的选择性萃取.高等学校化学学报,2018,39(6):1191-1196 TIAN H, ZHANG M L, WANG L S, TONG B H, ZHAO Z. Synthesis of 4,13-Dithio Benzene and-18-Crown-6 and Its Selective Extractability on Ag⁺. *Chem. J. Chinese Universities*, **2018**,**39**(6):1191-1196

- [5] 缪谦,黄辉,黄小波,徐颖,成义祥.基于2,3-萘-18-冠-6单元的共 轭高分子对金属离子的荧光传感器.无机化学学报,2009,25(12): 2182-2188
- MIAO Q, HUANG H, HUANG X B, XU Y, CHENG Y X. A Fluorescent Chemosensor for Metal Ions Based on the Conjugated Polymer Containing 2,3-Naphtho-18-Crown-6. *Chinese J. Inorg. Chem.*, 2009, 25(12):2182-2188
- [6] Ratch J S, Chivers T. Silicon Analogues of Crown Ethers and Cryptands: A New Chapter in Host-Guest Chemistry? Angew. Chem. Int. Ed., 2007,46(25):4610-4613
- [7] Ouchi M, Inoue Y, Kanzaki T, Hakushi T. Ring-Contracted Crown Ethers: 14-Crown-5, 17-Crown-6, and Their Sila-Analogues. Drastic Decrease in Cation-Binding Ability. *Bull. Chem. Soc. Jpn.*, **1984**, **57** (3):887-888
- [8] Reuter K, Thiele G, Hafner T, Uhlig F, von Hänisch C. Synthesis and Coordination Ability of a Partially Silicon Based Crown Ether. *Chem. Commun.*, 2016,52(90):13265-13268
- [10]Dankert F, von Hänisch C. Insights into the Coordination Ability of Siloxanes Employing Partially Silicon Based Crown Ethers: A Comparative Analysis of s-Block Metal Complexes. *Inorg. Chem.*, 2019, 58(5):3518-3526
- [11]Dankert F, Donsbach C, Rienmüller J, Richter R M, von Hänisch C. Alkaline Earth Metal Template (Cross -)Coupling Reactions with Hybrid Disila-Crown Ether Analogues. *Chem. Eur. J.*, **2019**, **25**(69): 15934-15943
- [12]赵岩, 敖银勇, 陈建, 宋宏涛, 黄玮, 彭静. 基于密度泛函理论研究 锂-冠醚配合物的结构和热力学参数. 物理化学学报, 2016,32(7): 1681-1690
 - ZHAO Y, AO Y Y, CHEN J, SONG H T, HUANG W, PENG J. Density Functional Theory Studies of the Structures and Thermodynamic Parameters of Li⁺-Crown Ether Complexes. *Acta Phys.-Chem. Sin.*, 2016,32(7):1681-1690
- [13]Nametkin N S, Islamov T K, Gusel'nikov L E, Sobtsov A A, Vdovin V M. Gas-Phase Thermal Conversion in a Series of Cyclocarbosiloxanes. *Russ. Chem. Bull.*, **1971,20**(1):76-79
- [14]Nametkin N S, Islamov T Kh, Gusel'nikov L E, Vdovin V M. Cyclocarbosiloxanes. *Russ. Chem. Rev.*, **1972**,**41**(2):111-130
- [15]Stephens P J, Devlin F J, Chabalowski C F, Frisch M J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem., 1994,98 (45):11623-1627
- [16]Grimme S, Ehrlich S, Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem., 2011,32(7):1456-1465
- [17]Weigend F, Ahlrichs R. Balanced Basis Sets of Split Valence, Triple

第37卷

Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.*, **2005**,7(18):3297-3305

- [18]Weigend F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys., 2006,8(9):1057-1065
- [19]Reed A E, Weinstock R B, Weinhold F. Natural Population Analysis. J. Chem. Phys., 1985,83(2):735-746
- [20]Lu T, Chen F W. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem., 2012,33(5):580-592
- [21]Bader R W F. Atoms in Molecules: A Quantum Theory. New York: Oxford University Press, 1990:16-22
- [22]Boys S F, Bernardi F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies-Some Procedures with Reduced Errors. *Mol. Phys.*, **1970**,**19**(4):553-556
- [23]Marenich A V, Cramer C J, Truhlar D G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B, 2009,113(18):6378-6396
- [24]Zhao Y, Schultz N E, Truhlar D G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput., 2006,2(2):364-382
- [25]Petersson G A, Bennett A, Tensfeldt T G, Al-Laham M A, Shirley W A, Mantzaris J. A Complete Basis Set Model Chemistry. I . The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements. J. Chem. Phys., 1988,89(4):2193-2218
- [26]Petersson G A, Al-Laham M A. A Complete Basis Set Model Chemistry. II . Open-Shell Systems and the Total Energies of the First-Row Atoms. J. Chem. Phys., 1991,94(9):6081-6090
- [27]Ho J, Klamt A, Coote M L. Comment on the Correct Use of Continuum Solvent Models. J. Phys. Chem. A, 2010,114(51):13442-13444
- [28]Parrish R M, Burns L A, Smith D G A, Simmonett A C, DePrince A E, Hohenstein E G, Bozkaya U, Sokolov A Y, Remigio R D, Richard R M, Gonthier J F, James A M, McAlexander H R, Kumar A, Saitow M, Wang X, Pritchard B P, Verma P, Schaefer H F, Patkowski K, King R A, Valeev E F, Evangelista F A, Turney J M, Crawford T D, Sherrill C D. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. J. Chem. Theory Comput., 2017,13(7):3185-3197
- [29]Jeziorski B, Moszynski R, Szalewicz K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. *Chem. Rev.*, **1994,94**(7):1887-1930
- [30]Dunning T H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys., 1989,90(2):1007-1023
- [31]Dunning T H, Peterson K A, Wilson A K. Gaussian Basis Sets for Use in Correlated Molecular Calculations. X. The Atoms Aluminum

through Argon Revisited. J. Chem. Phys., 2001,114(21):9244-9253

报

[32]Feller D. The Role of Databases in Support of Computational Chemistry Calculations. J. Comput. Chem., 1996,17(13):1571-1586

- [33]Papajak E, Truhlar D G. Convergent Partially Augmented Basis Sets for Post - Hartree - Fock Calculations of Molecular Properties and Reaction Barrier Heights. J. Chem. Theory Comput., 2011,7(1):10-18
- [34]Schuchardt K L, Didier B T, Elsethagen T, Sun L S, Gurumoorthi V, Chase J, Li J, Windus T L. Basis Set Exchange: A Community Database for Computational Sciences. J. Chem. Inf. Model., 2007, 47(3): 1045-1052
- [35]Woon D E, Dunning T H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum through Argon. J. Chem. Phys., 1993,98(2):1358-1371
- [36]Parker T M, Burns L A, Parrish R M, Ryno A G, Sherrill C D. Levels of Symmetry Adapted Perturbation Theory (SAPT). I . Efficiency and Performance for Interaction Energies. J. Chem. Phys., 2014,140 (9):094106-1-094106-16
- [37]Boulatov R, Du B, Meyers E A, Shore S G. Two Novel Lithium-15-Crown-5 Complexes: An Extended LiCl Chain Stabilized by Crown Ether and a Dimeric Complex Stabilized by Hydrogen Bonding with Water. *Inorg. Chem.*, 1999,38(20):4554-4558
- [38]Cordero B, Gómez V, Platero Prats A E, Revés M, Echeverría J, Cremades E, Barragán F, Alvarez S. Covalent Radii Revisited. *Dalton Trans.*, 2008(21):2832-2838
- [39]Shannon R D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Crystal*logr. Sect. A, 1976,A32(5):751-767
- [40]Guo X J, Zhu Y D, Wei M J, Wu X M, Lü L H, Lu X H. Theoretical Study of Hydration Effects on the Selectivity of 18-Crown-6 Between K⁺ and Na⁺. *Chinese J. Chem. Eng.*, 2011,19(2):212-216
- [41]Cremer D, Kraka E. A Description of the Chemical Bond in Terms of Local Properties of Electron Density and Energy. *Croat. Chem. Acta*, 1985,57(6):1259-1281
- [42]Vener M V, Manaev A V, Egorova A N, Tsirelson V G. QTAIM Study of Strong H-Bonds with the O—H…A Fragment (A=O, N) in Three-Dimensional Periodical Crystals. J. Phys. Chem. A, 2007,111 (6):1155-1162
- [43]Espinosa E, Alkorta I, Elguero J, Molins E. From Weak to Strong interactions: A Comprehensive Analysis of the Topological and Energetic Properties of the Electron Density Distribution Involving X— H…F—Y Systems. J. Chem. Phys., 2002,117(12):5529-5542
- [44]Cameron T S, Decken A, Krossing I, Passmore J, Rautiainen J M, Wang X P, Zeng X Q. Reactions of a Cyclodimethylsiloxane (Me₂SiO)₆ with Silver Salts of Weakly Coordinating Anions; Crystal Structures of [Ag(Me₂SiO)₆][Al] ([Al] = [FAl{OC(CF₃)₃}], [Al{OC(CF₃)₃}]) and Their Comparison with [Ag(18 - Crown - 6)]₂[SbF₆]₂. *Inorg. Chem.*, **2013,52**(6):3113-3126