SnO₂双层电子传输层对钙钛矿太阳能电池界面电荷传输的影响

罗 媛^{1,2,3} 张桂林^{1,2,3} 马书鹏^{1,2,3} 朱从潭^{1,2,3} 陈 甜^{1,2,3}
张 林^{1,2,3} 朱 刘^{4,5} 郭学益^{1,2,3} 杨 英^{*,1,2,3}
(¹中南大学冶金与环境学院,长沙 410083)
(²有色金属资源循环利用湖南省重点实验室,长沙 410083)
(³有色金属资源循环利用国家地方联合工程中心,长沙 410083)
(⁴广东省高性能薄膜太阳能材料企业重点实验室,清远 511517)
(⁵清远先导材料有限公司,清远 511517)

摘要:为了改善基于SnO₂电子传输层的钙钛矿太阳能电池的界面电荷传输特性和迟滞现象,我们采用低温溶液处理工艺制备了4种不同类型的SnO₂电子传输层用于钙钛矿太阳能电池,包括由SnCl₄·5H₂O溶胶-凝胶层(Cl₄-SnO₂)、SnCl₂·2H₂O溶胶-凝胶层(Cl₂-SnO₂)和SnO₂如米颗粒层(NP-SnO₂)与SnO₂胶体层(Col-SnO₂)两两相互作用形成的同质结SnO₂双层电子传输层和Col-SnO₂单层电子传输层;并系统研究了不同SnO₂双层电子传输层对器件光电性能和迟滞现象的影响。通过扫描电镜(SEM)、X射线衍射(XRD)、稳态光致发光(PL)、电化学阻抗(EIS)和稳定性测试等表征证实,在Col-SnO₂层下方插入Cl₂-SnO₂层可更好地形成紧密接触,两者相互作用形成平滑紧凑的SnO₂双层纳米晶体结构与钙钛矿层之间具有良好的界面接触和更少的界面缺陷,表现出更优异的电子提取和传输特性。与基于Col-SnO₂单层结构的器件(14.16%)相比,基于Cl₂-SnO₂/Col-SnO₂双层电子传输层结构的器件获得了15.01%的光电转换效率,正向扫描的光电转换效率提高了约23.3%,短路电流密度(*J_{sc}*)和填充因子(FF)均得到了改善,迟滞现象被明显抑制且表现出更好的稳定性。相比之下,基于Cl₄-SnO₂/Col-SnO₂双层结构器件的性能改善稍显逊色,基于NP-SnO₂/Col-SnO₂双层结构器件的性能反而有所下降。

关键词:双层电子传输层;钙钛矿太阳能电池;二氧化锡;迟滞现象;稳定性
中图分类号:0649.4;0649.1 文献标识码:A 文章编号:1001-4861(2022)05-0850-11
DOI:10.11862/CJIC.2022.093

Effect of Bilayer SnO₂ Electron Transport Layer on the Interfacial Charge Transport in Perovskite Solar Cells

LUO Yuan^{1,2,3} ZHANG Gui-Lin^{1,2,3} MA Shu-Peng^{1,2,3} ZHU Cong-Tan^{1,2,3} CHEN Tian^{1,2,3} ZHANG Lin^{1,2,3} ZHU Liu^{4,5} GUO Xue-Yi^{1,2,3} YANG Ying^{*,1,2,3}

(¹School of Metallurgy and Environment, Central South University, Changsha 410083, China)

(²Hunan Key Laboratory of Nonferrous Metal Resources Recycling, Changsha 410083, China)

(³National&Regional Joint Engineering Research Center of Nonferrous Metal Resources Recycling, Changsha 410083, China)

(⁴Guangdong Provincial Enterprise Key Laboratory of High Performance Thin Film

Solar Materials, Qingyuan, Guangdong 511517, China)

(⁵First Materials Co., Ltd., Qingyuan, Guangdong 511517, China)

Abstract: SnO_2 has the advantages of the wide bandgap, high optical transparency, high electron mobility, excellent UV stability, and lower preparation temperature. It is widely used in high-efficiency and stable perovskite solar cells

国家自然科学基金(No.61774169)、清远市创新创业团队项目(No.2018001)、广东省科技计划项目(No.2018B030323010)和中南大学研 究生自主探索创新项目(No.2021zzts0612)资助。

收稿日期:2021-12-07。收修改稿日期:2022-03-16。

^{*}通信联系人。E-mail:muyicaoyang@csu.edu.cn

(PSCs). However, the surface defects of SnO₂ can cause serious hysteresis and other adverse effects. In order to improve the interfacial charge transport characteristics and hysteresis of perovskite solar cells based on the SnO₂ electron transport layer. Four different types of SnO₂ electron transport layers were prepared as electron transport layers (ETLs) for PSCs using low-temperature solution processing technology. SnCl₄•5H₂O (Cl₄-SnO₂), SnCl₂•2H₂O (Cl₂-SnO₂), and SnO₂ nanoparticle (NP-SnO₂) were used to form the bilayer ETL structure with SnO₂ colloidal (Col-SnO₂). The effects of different SnO₂ bilayer ETLs on the photoelectric performance and hysteresis of the device were systematically studied. Through analysis of scanning electron microscopy (SEM), X-ray diffraction (XRD), steady-state photoluminescence spectrum (PL), electrochemical impedance (EIS), and stability test, it can be confirmed that the surface of Cl₄-SnO₂/Col-SnO₂ and Cl₂-SnO₂/Col-SnO₂ films was smooth and compact with good coverage; and inserting a Cl₂-SnO₂ layer under the Col-SnO₂ layer can form better interface contact and fewer interfacial defects, which is beneficial to reduce the interfacial resistance and charge recombination, and exhibits more excellent electron extraction and transport characteristics. However, the nanostructure composed of the NP-SnO₂ layer and the Col-SnO₂ layer is not conducive to the growth of perovskite crystals, and the incompatible interface between the two causes serious charge recombination, which will affect the charge transfer. Compared with the device based on the Col-SnO₂ single ETL device (14.16%), the device based on the Cl₂-SnO₂/Col-SnO₂ bilayer structure obtained a photoelectric conversion efficiency of 15.01%, and the photoelectric conversion efficiency of the forward scan was increased by about 23.3%, short circuit current density (J_s) and fill factor (FF) were improved, the hysteresis was obviously suppressed and showed better stability.

Keywords: bilayer electron transport layer; perovskite solar cells; tin oxide; interface adjustment; hysteresis; stability

0 引 言

近年来,钙钛矿太阳能电池(PSC)的光电转换效 率(PCE)显现出惊人的提升,实验室规模的单结电池 效率已从首次问世的3.8% 飙升至现在的25.5%[1-4]。 同样,电池稳定性方面也取得了很大的进步,器件 寿命已从最初的几秒增加到超过10000 h^[5-8]。在高 效稳定的平面异质结PSC中,电子传输层(ETL)在提 取和传输光生电子、阻挡空穴、调节界面能级和减 少电荷复合等方面起着至关重要的作用[9-10]。因此, 性能优异的平面异质结 PSC 需要均匀、致密无针孔 且导电性好的ETL^[11]。TiO₂^[12-13]、SnO₂^[14]和ZnO^[15]等无 机N型金属氧化物均可被用作ETL材料。其中, SnO,具有宽带隙、高光学透明度、高电子迁移率、优 异的紫外线稳定性、可低温制备等优点,被广泛应 用于高效稳定的正式PSC^[16-19]。Ke等^[20]首次报道了 低温溶液处理的SnO, ETL用于正式平面PSC,获得 了16.02%的平均PCE,这主要归因于良好的抗反射 能力和高电子迁移率。但由于SnO2层/钙钛矿层之 间界面陷阱密度大、电子传输效率低,导致光电流 迟滞现象和填充因子(FF)不佳[19,21]。此外,制造没有 针孔的致密 SnO,薄膜仍具有一定的挑战性, SnO,层 中的任何针孔都有可能会造成钙钛矿层与透明导 电玻璃基底直接接触和出现分流通路,从而导致高 漏电流和界面处严重的电荷载流子复合^[11,22]。

Noh 等[23]设计了双层结构(SnO₂/ZnO)的 ETL 用 于减少PSC的能量损失,双层ETL减少了针孔的产 生,提供了合适的能级匹配,抑制了界面处的缺陷 复合。Wang等[24]开发了一种低温溶液处理的In₂O₃/ SnO,双层ETL,可帮助形成均匀、致密和低缺陷密度 的钙钛矿薄膜,减少钙钛矿和ETL界面处的开路电 压(V_a)损失。Dong 等^[25]制备了 Ga₂O₃/SnO₂ 双层 ETL 来调节界面电荷动力学。Ga₂O₃与SnO₂的协同作用 可有效地减少界面电荷复合,提高电荷提取和传输 能力,使PSC的效率和稳定性大大提升。将SnO,与 其他无机 ETL结合形成的异质结双层结构证实了 双层 SnO, ETL 的应用前景。但异质结双层 SnO, ETL在不同材料之间出现的不兼容界面会引起不良 的电荷传输阻力和界面电荷复合:且异质结双层 SnO, ETL中不同材料的载流子迁移率不同,会影响 载流子传输。因此,开发低缺陷、与钙钛矿和FTO 基底之间形成良好接触的同质结双层 SnO, ETL具 有重要的意义。

为了改善基于SnO₂ ETL器件的界面电荷传输

特性和迟滞现象,我们对基于4种不同类型SnO, ETL的PSC进行了系统的比较研究,包括由SnCl₄· 5H₂O溶胶-凝胶层(Cl₄-SnO₂)、SnCl₂·2H₂O溶胶-凝胶 层(Cl,-SnO₂)和SnO₂纳米颗粒层(NP-SnO₂)与SnO₂胶 体层(Col-SnO₂)两两相互作用形成的同质结SnO₂双 层 ETL 和 Col-SnO, 单层 ETL, 即 Cl₄-SnO₂/Col-SnO₂、 Cl₂-SnO₂/Col-SnO₂、NP-SnO₂/Col-SnO₂和Col-SnO₂。通 过一系列表征证实 Cl₄ - SnO₂/Col - SnO₂ 薄膜和 Cl,-SnO,/Col-SnO,薄膜表面平滑致密,覆盖率好, Cl,-SnO,/Col-SnO,基底上生长的钙钛矿薄膜具有更 好的结晶度和更大的晶粒尺寸,与钙钛矿薄膜和 FTO之间界面接触良好,表现出更优异的电子提取 和传输特性;而NP-SnO,/Col-SnO,薄膜不利于钙钛 矿晶体的生长,且其不兼容的界面会引起严重的电 荷复合。基于Cl,-SnO,/Col-SnO,双层ETL结构的器 件获得了15.01%的PCE,迟滞现象被明显抑制且具 有更好的稳定性;优于基于Cl₄-SnO₂/Col-SnO₂双层 结构(PEC=14.49%)、基于 NP-SnO₂/Col-SnO₂双层结 构(PEC=13.10%)和基于 Col-SnO, 单层结构(PEC= 14.16%)的器件。

1 实验部分

1.1 实验用试剂和原料

FTO导电玻璃购自大连七色光太阳能科技有限 公司;二氧化锡胶体分散液(15% SnO₂,在H₂O胶体 分散体中)、二氧化锡纳米颗粒(30~60 nm,99.7%)购 自阿法埃沙(中国)化学有限公司;氯化亚锡水合物 (SnCl₂·2H₂O, >99.99%)、氯化锡水合物(SnCl₄·5H₂O, 99.995%)、N,N-二甲基甲酰胺(DMF,99%)、二甲基亚 砜(DMSO,99.7%)、乙酸乙酯(AR)、氯苯(99%)、乙腈 (99%)购自阿拉丁试剂(上海)有限公司;碘化铅(PbI₂, >99.99%)、甲基碘化铵(CH₃NH₃I,>99.5%)、4-叔丁基 吡啶(TPB,>96%)、双三氟甲磺酰亚胺锂(Li-TFSI)购 自西安宝莱特光电科技有限公司;2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-OMeTAD,98%)、正丁醇(AR)购自北京百灵威科技有 限公司;无水乙醇(AR)、异丙醇(AR)购自国药集团化 学试剂有限公司。

1.2 ETL的制备

将FTO导电玻璃依次用洗洁精、去离子水、无水乙醇各超声清洗20min,然后在烘箱中干燥。 FTO玻璃基板在旋涂ETL之前用紫外臭氧处理30min。将二氧化锡胶体分散液用水稀释至质量分数 3.75%备用。

Cl₄-SnO₂/Col-SnO₂ ETL:将 SnCl₄·5H₂O(0.1 mol· L⁻¹溶于异丙醇)前驱体溶液以 3 000 r·min⁻¹的速度 在 FTO/玻璃基板上旋涂 30 s,然后在 150 ℃下退火 60 min,得到底层 Cl₄-SnO₂层;紫外臭氧处理 30 min 后,将 3.75% SnO₂胶体分散液以 4 000 r·min⁻¹的速 度在 SnO₂/FTO 玻璃基板旋涂 30 s,然后在 150 ℃下 退火 30 min,得到 SnO₂双层 ETL。

Cl₂-SnO₂/Col-SnO₂ ETL:将 SnCl₂·2H₂O(0.1 mol· L⁻¹,溶于无水乙醇)前驱体溶液以3000 r·min⁻¹的速 度在FTO/玻璃基板上旋涂30 s,然后在150℃下退 火60 min,得到底层Cl₂-SnO₂层;紫外臭氧处理30 min后,将3.75% SnO₂胶体分散液以4000 r·min⁻¹的 速度在SnO₂/FTO玻璃基板旋涂30 s,然后在150℃ 下退火30 min,得到SnO₂双层ETL。

NP-SnO₂/Col-SnO₂ ETL:将 SnO₂纳米颗粒(5 mg· mL⁻¹,溶于正丁醇)前驱液以3 000 r·min⁻¹的速度在 FTO/玻璃基板上旋涂 30 s,然后在 150 ℃下退火 60 min,得到底层 NP-SnO₂层;紫外臭氧处理 30 min后, 将 3.75%的 SnO₂胶体分散液以4 000 r·min⁻¹的速度 在 SnO₂/FTO 玻璃基板旋涂 30 s,然后在 150 ℃下退 火 30 min,得到 SnO₂双层 ETL。

Col-SnO₂ ETL;将 3.75%的 SnO₂胶体分散液以 4 000 r·min⁻¹的速度在 SnO₂/FTO 玻璃基板旋涂 30 s,然后在150℃下退火 30 min,得到 SnO₂单层 ETL。

1.3 钙钛矿前驱体溶液和薄膜的制备

将碘化铅、甲基碘化铵按照物质的量之比1:1 溶解在DMF和DMSO的混合溶液中(体积比为4:1), 制备1.2 mol·L⁻¹的钙钛矿前驱体溶液。在SnO₂ ETL 上以5000 r·min⁻¹的速度旋涂 30 s,并在第6 s 滴加 300 μL乙酸乙酯反溶剂。然后在100 ℃的加热台上 加热15 min。

1.4 空穴传输层和顶部电极的制备

将 70 mg·mL⁻¹的空穴传输层前驱液(72.3 mg的 spiro-OMeTAD溶解在 1 mL氯苯溶液中,再向溶液 中滴加 29 μL的 4-叔丁基吡啶溶液和 17.5 μL的 520 mg·mL⁻¹Li-TFSI的乙腈溶液)以 3 000 r·min⁻¹的 速度在钙钛矿层上旋涂 30 s。干燥氧化后在真空镀 膜机中蒸镀 100 nm Ag电极。

1.5 性能表征

采用扫描电子显微镜(SEM, MIRA3 LMH, TESCAN,捷克)对二氧化锡和钙钛矿的表面形貌进行表征,加速电压为10kV。采用X射线衍射仪

(XRD, Rigaku-TTRⅢ, 日本)对钙钛矿的物相组成进 行表征,辐射源为Cu Kα,波长为0.154 nm,测试电 压和测试电流分别为45 kV和40 mA,测试角度(20) 为10°~80°,测试速度为10(°)·min⁻¹。采用具有466 nm脉冲的全功能型荧光光谱仪(FLS1000,Edinburgh, 英国)测量钙钛矿薄膜的光致发光能力。采用紫外 光谱仪(UV-Vis, Hitachi, 日本)对二氧化锡和钙钛矿 薄膜的吸光特性进行表征,波长范围为300~1100 nm。采用电化学工作站(PGSTAT302N, Metrohm, AUT86802,瑞士)对电池的电化学阻抗(EIS)进行表 征,交流扰动信号的振幅为10mV,偏压为-1.0V, 频率范围10⁻¹~10⁵ Hz。采用电流电压特性曲线测试 软件(TIS-KA6000,光炎科技,中国)和稳态太阳光模 拟器(SS-F5-AAA,光炎科技,中国)组合对电池的光 电性能进行表征,电池的测试光强为AM1.5G 100 mW·cm⁻², 面积为0.1657 cm²。

2 结果与讨论

2.1 双层 SnO₂ ETL 的微观形貌

图 1a~1d 显示了 4 种不同类型 SnO₂ ETL 的器件 结构(玻璃/FTO/SnO₂/MAPbI₃/Spiro-OMeTAD/Ag),分 别为同质结 Cl₄-SnO₂/Col-SnO₂双层 ETL(图 1a)、同 质结 Cl₂-SnO₂/Col-SnO₂双层 ETL(图 1b)、同质结 NP-SnO₂/Col-SnO₂双层 ETL(图 1c)以及 Col-SnO₂单层 ETL(图 1d)。为促进 2 种类型的 SnO₂相互渗透/接 触,在涂覆底层 SnO₂薄膜后均进行了紫外臭氧处 理,以确保上下两层 SnO₂薄膜界面具有良好的电子 接触。通过比较不同双层 SnO₂纳米晶体结构的互 补特性,以获得高效稳定的正式 PSC。

通过 SEM 测试了 4 种不同类型 SnO₂ ETL 的形 貌特征,结果如图 2 所示。细小颗粒状的 SnO₂纳米 晶体均匀地覆盖在了 FTO 基底表面,双层 SnO₂薄膜 显示出更均匀连续的表面,可阻挡钙钛矿层与 FTO 直接接触。 Cl₄-SnO₂/Col-SnO₂ 薄膜和 Cl₂-SnO₂/ Col-SnO₂薄膜表面看起来更平滑致密,这是由于在 Col-SnO₂层下方插入 Cl₄-SnO₂层或 Cl₂-SnO₂层可有效 地填充 FTO 的谷和峰,降低了 FTO 的表面粗糙度^[26]。 平滑的 SnO₂表面有助于纳米晶体的择优取向并促 进与钙钛矿层之间的界面接触,有利于钙钛矿的沉 积,同时可减少移动卤 化物空位和界面非辐射 复合^[26-27]。

图1 四种不同类型SnO₂ETL的器件结构图

Fig.1 Schematic diagrams of the device structures of four different types of SnO₂ ETL

(a) Cl_4 -SnO₂/Col-SnO₂ ETL, (b) Cl_2 -SnO₂/Col-SnO₂ ETL, (c) NP-SnO₂/Col-SnO₂ ETL, and (d) Col-SnO₂ ETL

图 2 四种不同类型 SnO, ETL 的 SEM 俯视图

Fig.2 Top-view SEM images of four different types of SnO₂ ETL

2.2 双层 SnO_2 ETL 的光学、电学性能

图 3 为 4 种不同类型 SnO₂ ETL 沉积在 FTO 上的 透射光谱。一般来说,在正式 PSC 中, ETL 需要足够

高的透射率以确保钙钛矿层吸收最多的太阳光。 由图3可看出这4种不同类型SnO₂ETL在可见光区 均有较高的透射率,均在80%左右,可证实在 Col-SnO₂薄膜下方插入Cl₄-SnO₂薄膜、Cl₂-SnO₂薄膜 或NP-SnO₂薄膜形成的双层SnO₂纳米晶体结构没有 补偿器件的光学性能。

Fig.3 Transmittance spectra of four different types of SnO₂ ETL

为了探究不同类型SnO₂ETL的能级排列情况, 我们对4种不同类型的单层SnO₂薄膜进行了紫外可 见光(UV-Vis)光谱分析。如图4a所示,4种单层的 SnO₂薄膜在可见光的波长范围内表现出相似的吸收值,由Tauc图可估计出Cl₄-SnO₂薄膜、Cl₂-SnO₂薄膜、NP-SnO₂薄膜、Col-SnO₂薄膜的光学带隙分别为 3.70、3.70、3.74、3.72 eV;根据文献查阅的Cl₄-SnO₂ 薄膜^[28]、Cl₂-SnO₂薄膜^[29]、NP-SnO₂薄膜^[30]、Col-SnO₂薄 膜^[31]的价带位置可估算出其导带位置分别约为 4.49、4.47、4.26、4.25 eV,故能级图如图4b所示。

在某种程度上,能级的变化也会反映在电子迁 移率上。空间电荷限制电流(SCLC)模型可用于估算 4种不同类型ETL薄膜的电子迁移率。我们制备了 FTO/ETL/Ag结构的纯电子器件,图4c为纯电子器 件的暗电流-电压(*J*-*V*)曲线,图4d为取对数后的 SCLC模型曲线。通过Mott-Gurney定律拟合*J*-*V*曲 线可计算电子迁移率^[32]:

$$J = \frac{9\varepsilon_{0}\varepsilon_{r}(V_{app} - V_{r} - V_{bi})^{2}\mu_{e}}{8L^{3}}$$
(1)

等式两边取对数可得:

$$\ln J = 2\ln \left(V_{\rm app} - V_{\rm r} - V_{\rm bi} \right) + \ln \frac{9\varepsilon_0 \varepsilon_{\rm r} \mu_{\rm e}}{8L^3}$$
(2)

Inset: Tauc diagrams of the different single SnO₂ films

图4 四种不同单层 SnO₂薄膜的 UV-Vis 谱图 (a)和能级排列图 (b); 纯电子器件的 *J-V*特性曲线 (c)和 SCLC 模型曲线 (d) Fig.4 UV-Vis spectra (a) and energy level diagram (b) of four different SnO₂ films; *J-V* characteristic curves (c) and SCLC model (d) of the electron-only devices

其中 J 是电流密度, L 是 ETL 的厚度, ε_0 是真空介电 常数(8.854×10⁻¹² F·m⁻¹), ε_i 是 ETL 的相对介电常数, V_{app} 是施加的电压, V_i 是由于辐射复合引起的电压损 失, V_{bi} 是阳极和阴极之间的功函数差, μ_e 为电子迁移 率。双层 SnO₂ 薄膜的厚度均约为35 nm, 单层 Col-SnO₂薄膜的厚度为20 nm, Ag电极的厚度为100 nm, SnO₂的相对介电常数为13。通过截距计算可得 出 Cl₂-SnO₂/Col-SnO₂ ETL 的电子迁移率为1.28×10⁻⁵ cm²·V⁻¹·s⁻¹, 略高于 Cl₄-SnO₂/Col-SnO₂ ETL(7.8×10⁻⁶ cm²·V⁻¹·s⁻¹)、NP - SnO₂/Col - SnO₂ ETL(7.8×10⁻⁶ cm²·V⁻¹·s⁻¹)、NP - SnO₂/Col - SnO₂ ETL(6.7×10⁻⁶ cm²· V⁻¹·s⁻¹)、Col-SnO₂ETL(7.6×10⁻⁷ cm²·V⁻¹·s⁻¹)的电子迁 移率。迁移率的增加可能是 FTO/ETL 界面的电子 耦合的改善, 有助于电子从 ETL 注入到 FTO^[31]。高 电子迁移率可有效地促进 PSC 的电子转移, 减少 ETL/钙钛矿界面处的电荷积累, 减少迟滞现象^[33]。

2.3 双层 SnO₂/MAPbI₃复合薄膜的微观形貌和晶体结构

为了研究在不同类型 SnO₂ ETL上生长的钙钛 矿薄膜质量,对不同 ETL上沉积的钙钛矿薄膜进行 了形态和晶体表征。一般来说,钙钛矿薄膜覆盖不 完全会导致 Spiro-OMeTAD 与 ETL直接接触,从而导 致漏电并影响器件的开路电压^[34]。图5为不同 ETL 上沉积的钙钛矿薄膜的 SEM 图。所有钙钛矿薄膜 均完全覆盖了 ETL,可减少钙钛矿层表面的电荷复 合,对电池性能具有积极影响^[34]。相比之下,沉积在 Cl₂-SnO₂/Col-SnO₂ ETL上的钙钛矿薄膜显示出更光 滑致密的形态,有利于电荷从钙钛矿层传输到 ETL 和 HTL^[35]。

图 6a 为不同 ETL 上沉积的钙钛矿薄膜的 XRD 图, MAPbI₃钙钛矿相在(110)、(220)、(310)、(321)、(224) 晶面的主要特征峰能被清楚地识别,分别对应 14.18°、28.52°、32.01°、37.85°、40.78°,与文献报道一 致^[36-37]。与在Col-SnO₂ ETL上生长的钙钛矿薄膜相 比,在Cl₄-SnO₂/Col-SnO₂ ETL和Cl₂-SnO₂/Col-SnO₂ ETL上生长的钙钛矿薄膜在(110)晶面上具有相当且 较强的衍射峰,表明这些钙钛矿薄膜均具有较好的 结晶度。相比之下,在NP-SnO₂/Col-SnO₂ ETL上生 长的钙钛矿薄膜的衍射峰较弱,且在12.60°处存在 微弱的PbI₂特征峰,说明NP-SnO₂层与Col-SnO₂层构 成的纳米结构可能不利于钙钛矿晶体的生长。

2.4 双层 SnO₂/MAPbI₃复合薄膜的光学、电学性能

图 6b 为沉积在不同类型 SnO₂ ETL上钙钛矿的 UV-Vis吸收光谱。钙钛矿的吸收值没有太大变化, 且吸收边缘均位于约 783 nm 处,通过前沿线性外推 法估算出带隙均为 1.58 eV 左右,可推测基于 Cl₂-SnO₂/Col-SnO₂ ETL的器件中短路电流密度(*J*_{sc})受 钙钛矿层的影响不大,主要归因于电性能的影响^[21]。

为了研究钙钛矿薄膜的电子注入动力学,进行 了稳态光致发光(PL)测试。图 6c 为沉积在不同类型 SnO₂ ETL上钙钛矿薄膜的 PL猝灭结果。PL强度的 顺序为 NP-SnO₂/Col-SnO₂薄膜>Col-SnO₂薄膜> Cl₄-SnO₂/Col-SnO₂薄膜和Cl₂-SnO₂/Col-SnO₂薄膜。 Cl₄-SnO₂/Col-SnO₂薄膜和Cl₂-SnO₂/Col-SnO₂薄膜上钙 钛矿层的 PL强度被强烈猝灭,表明 Cl₄-SnO₂/ Col-SnO₂和 Cl₂-SnO₂/Col-SnO₂同质结双层 ETL能与 钙钛矿层形成良好的界面接触,更容易提取电子和 减少界面电荷复合^[27];相比之下 NP-SnO₂/Col-SnO₂ ETL和 Col-SnO₂ ETL上钙钛矿层的 PL强度猝灭较 弱,表明这些 ETL的电荷提取能力较差^[26]。

采用EIS进一步测量了4种不同类型SnO₂ETL 器件的电荷传输特性和电荷复合现象。图6d为 Nyquist图和相应的等效电路,等效电路由一个串联

图 5 沉积在(a) Cl₄-SnO₂/Col-SnO₂薄膜、(b) Cl₂-SnO₂/Col-SnO₂薄膜、(c) NP-SnO₂/Col-SnO₂薄膜和 (d) Col-SnO₂薄膜上的钙钛矿 SEM 俯视图

Fig.5 Top-view SEM images of perovskite deposited on (a) Cl₄-SnO₂/Col-SnO₂ film, (b) Cl₂-SnO₂/Col-SnO₂ film,
 (c) NP-SnO₂/Col-SnO₂ film and (d) Col-SnO₂ film

电阻 R_s和一个电阻-电容元件 R_u-C_u组成。R_s与金属和导线连接引起的串联电阻有关,而 R_u-C_u则与界面传输电阻和电容有关^[16]。由于所有器件中的钙钛矿/空穴传输层界面均相同,故 EIS测试值的变化被认为是源自钙钛矿/电子传输层界面的不同^[38]。表1总结了4种不同类型 SnO₂电子传输层器件在暗态、

Ta

偏压为1.0V条件下Nyquist图的拟合值。器件 R_{tr} 的 大小顺序为NP-SnO₂/Col-SnO₂薄膜>Col-SnO₂薄膜> Cl₄-SnO₂/Col-SnO₂薄膜>Cl₂-SnO₂/Col-SnO₂薄膜,其结 果与PL测试一致。Cl₂-SnO₂/Col-SnO₂器件中较低的 R_{tr} 值揭示了其从钙钛矿层到相邻Cl₂-SnO₂/Col-SnO₂ 电子传输层具有增强的电荷传输能力^[21]。

图 6 沉积在 4 种不同基材上的钙钛矿薄膜的(a) XRD 图、(b) UV-Vis 吸收光谱和(c) PL 光谱及(d) ETLs 不同的 PSCs 的 Nyquist 图 Fig.6 (a) XRD patterns, (b) UV-Vis absorption spectra, and (c) PL spectra of perovskite films deposited on four different substrates, and (d) Nyquist curves of PSCs with different ETLs

	表1	基于4种不同类型 SnO_2 ETL的PSCs器件性能参数
ble 1	Device	performance of PSCs based on four different types of SnO ₂ ETL

ETL	Scan direction	$V_{\rm oc}$ / V	$J_{\rm sc}/({\rm mA} \boldsymbol{\cdot} {\rm cm}^{-2})$	FF / %	PCE / %	$R_{ m s}$ / Ω	$R_{ m tr}$ / Ω	HI
	Forward	0.93	19.99	53.94	9.96	54.98	90.53	0.31
$Cl_4 - SnO_2 / Col - SnO_2$	Reverse	1.00	19.89	73.12	14.49			
	Forward	0.97	20.80	61.20	12.28	48.13	85.8	0.18
Cl_2 -SnO ₂ /Col-SnO ₂	Reverse	1.01	20.71	71.85	15.01			
	Forward	0.94	18.06	37.91	6.42	24.83	321.2	0.51
$NP-SnO_2/Col-SnO_2$	Reverse	1.02	18.05	71.41	13.10			
	Forward	0.95	20.54	41.64	8.11	35.35	143.6	0.43
Col-SnO ₂	Reverse	1.04	19.95	68.31	14.16			

857

2.5 器件的光伏性能及稳定性研究

图7为4种不同类型SnO, ETL的PSCs的正反 扫J-V曲线,表1总结了相应的光伏性能参数。基于 Cl₂-SnO₂/Col-SnO₂双层结构的器件表现出最佳的光 伏性能,反向扫描中PCE为15.01%(正扫为 12.28%)、V_{oc}为1.01 V(正扫为0.97 V)、J_{sc}为20.71 mA·cm⁻²(正扫为20.80 mA·cm⁻²)、FF为71.85%(正扫 为61.20%),优于基于Cl₄-SnO₂/Col-SnO₂双层结构的 器件(反扫 PCE=14.49%, V_o=1.00 V, J_o=19.89 mA· cm⁻², FF=73.12%)、基于 NP-SnO₂/Col-SnO₂双层结构 的器件(反扫 PCE=13.10%, V_s=1.02 V, J_s=18.05 mA· cm⁻², FF=71.41%)和基于 Col-SnO, 单层结构的器件 (反扫 PCE=14.16%, V_{or}=1.04 V, J_{sc}=19.95 mA·cm⁻², FF=68.31%)。与基于 Col-SnO, 单层结构的器件相 比,基于Cl₄-SnO₂/Col-SnO₂双层结构的器件和基于 Cl₂-SnO₂/Col-SnO₂双层结构的器件均表现出改善的 PCE、FF和迟滞现象减少,而基于Cl,-SnO,/Col-SnO, 双层结构的器件性能改善更为明显,它在保持高V。 的情况下,提高了正反扫的FF和J。且大大降低了J-V迟滞,这主要归因于Cl,-SnO,/Col-SnO,双层结构结 合了 SnCl,·2H,O 退火结晶形成的纳米结构与 SnO, 胶体退火结晶形成的纳米结构的互补特性有利于

高质量钙钛矿薄膜的形成,提高了电荷提取和传输 特性,抑制了界面复合和界面电荷积累^[27,39]。然而, 基于 NP-SnO₂/Col-SnO₂双层结构的器件虽具有较高 的 V_{∞} ,但 J_{∞} 较低,导致 PCE 较低,且迟滞现象严重, 其原因可能是 NP-SnO₂层与 Col-SnO₂层之间不兼容 界面引起不良的电荷复合,会影响 NP-SnO₂/Col-SnO₂ ETL 中电荷的传输^[40]。

不同类型 SnO₂ ETL 层的 PSCs 器件具有不同的 *J*-*V*曲线和迟滞特性,迟滞指数(HI)的计算公式 如下^[26]:

HI=(PCE_{reverse}-PCE_{forward})/PCE_{reverse} (3) 其中,PCE_{reverse}为反扫的光电转换效率,PCE_{forward}为正 扫的光电转换效率。Cl₄-SnO₂/Col-SnO₂、Cl₂-SnO₂/Col-SnO₂、NP-SnO₂/Col-SnO₂和Col-SnO₂电子传输层的 PSCs的HI分别为0.31、0.18、0.51和0.43。基于 Cl₂-SnO₂/Col-SnO₂双层结构的器件的HI明显低于其 他3种器件的HI。文献中关于造成光电流迟滞现象 的因素有很多,其中一个普遍认可的因素是ETL/钙 钛矿层界面处的电荷积累和移动离子的存在^[26,41,42]。 据报道,钙钛矿层与相邻的ETL的能带能量排列强 烈影响界面处电荷积累的程度,而离子迁移普遍存 在于多晶钙钛矿薄膜中^[26]。因此,我们推测ETL/钙

图7 基于不同类型 SnO₂ ETL 的 PSCs 器件的 J-V曲线 Fig.7 J-V curves of PSCs based on four different types of SnO₂ ETL

钛矿界面的电荷提取质量可能会导致电荷积累,而 迟滞的存在和大小与不同纳米结构ETL性能差异 相关^[26,43]。通过上述系列表征分析,Cl₂-SnO₂层与 Col-SnO₂层形成的连续纳米结构可形成覆盖率好、 光滑无空隙的SnO₂薄膜表面,与钙钛矿层接触良 好,降低了缺陷态密度和界面电荷积累,使正扫PCE 提升了约23.3%,从而减少了迟滞^[21,26]。

长期稳定性对器件的可行性非常重要,我们测 量了基于这4种不同类型SnO, ETL的器件在环境空 气湿度中的长期稳定性,所有器件均未封装且在 (28±5) ℃、RH=80%±5%的环境室温下储存和测试。 从图8可看出,基于Cl,-SnO,/Col-SnO,双层结构的器 件表现出最佳的稳定性,在37d后仍保留了初始效 率的 71%, 而基于 Cl₄ - SnO₂/Col - SnO₂、NP - SnO₂/ Col-SnO,双层结构和Col-SnO,单层结构的器件却只 分别维持了初始效率的61%、51%、56%。影响器件 稳定性的因素有很多,包括湿度、光照、温度、氧气、 钙钛矿层、电子传输层、空穴传输层、电极以及相邻 层之间的界面等[42,44]。在这项研究中,我们看到具 有优异电荷传输特性的器件显示出更好的稳定性, 可以推测基于Cl,-SnO,/Col-SnO,双层结构的器件稳 定性的提高主要是由于钙钛矿层与ETL之间界面 电荷积累的减少[45]。

图 8 基于 4 种不同类型 SnO₂ ETL 的器件的无封装 稳定性测试

Fig.8 Stability test without encapsulation of devices based on four different types of SnO₂ ETL

3 结 论

我们系统地研究了4种不同类型SnO₂ETL对正式PSC光电性能和迟滞现象的影响。基于Cl₂-SnO₂/Col-SnO₂双层结构的器件实现了15.01%的PCE,高

于基于 Cl₄-SnO₂/Col-SnO₂双层结构的器件(14.49%)、 基于 NP-SnO₂/Col-SnO₂双层结构的器件(13.10%)和 基于 Col-SnO₂单层结构的器件(14.16%)。通过系列 表征证实, Col-SnO₂层与 Cl₂-SnO₂层相互作用形成的 平滑紧凑的双层纳米晶体结构有利于上层钙钛矿 薄膜的生长,且 Cl₂-SnO₂/Col-SnO₂ ETL 与钙钛矿层 的界面接触良好,有利于降低界面电阻和电荷复 合,表现出更优异的电子提取和传输特性;而 NP-SnO₂层与 Col-SnO₂层构成的纳米结构不利于钙 钛矿晶体的生长,且两者之间不兼容的界面引起严 重的电荷复合,会影响电荷的传输。与 Col-SnO₂单 层结构的器件相比,基于 Cl₂-SnO₂/Col-SnO₂双层结 构的器件优势使得正扫 PCE 提高了约 23.3%,迟滞 现象被明显抑制且表现出更好的稳定性。

参考文献:

- [1]Yoo J J, Seo G, Chua M R, Park T G, Lu Y, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa-Baena J P, Bulović V, Shin S S, Bawendi M G, Seo J. Efficient Perovskite Solar Cells via Improved Carrier Management. *Nature*, **2021,590**(7847):587-593
- [2]National Renewable Energy Laboratory. Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html, 2021.
- [3]Deng K, Chen Q H, Li L. Modification Engineering in SnO₂ Electron Transport Layer toward Perovskite Solar Cells: Efficiency and Stability. *Adv. Funct. Mater.*, 2020,30(46):2004209-2004225
- [4]Liang J, Zhu G Y, Wang C X, Zhao P Y, Wang Y R, Hu Y, Ma L B, Tie Z X, Liu J, Jin Z. An All-Inorganic Perovskite Solar Capacitor for Efficient and Stable Spontaneous Photocharging. *Nano Energy*, **2018**, **52**:239-245
- [5]Grancini G, Roldan-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K. One-Year Stable Perovskite Solar Cells by 2D/3D Interface Engineering. *Nat. Commun.*, 2017,8(1):15684-15692
- [6]He R, Huang X Z, Chee M, Hao F, Dong P. Carbon-Based Perovskite Solar Cells: From Single-Junction to Modules. *Carbon Energy*, 2019,1 (1):109-123
- [7]Xia Y, Zhao C, Zhao P Y, Mao L Y, Ding Y C, Hong D C, Tian Y X, Yan W S, Jin Z. Pseudohalide Substitution and Potassium Doping in FA_{0.98}K_{0.02}Pb(SCN)₂I for High-Stability Hole-Conductor-Free Perovskite Solar Cells. J. Power Sources, 2021,494(15):229781
- [8]Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J. All-Inorganic Perovskite Solar Cells. J. Am. Chem. Soc., 2016, 138(49):15829-15832
- [9]杨英,罗媛,马书鹏,朱从潭,朱刘,郭学益.钙钛矿太阳能电池电 子传输层的制备及应用.化学进展,2021,33(2):281-302

YANG Y, LUO Y, MA S P, ZHU C T, ZHU L, GUO X Y. Advances of

Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application. *Prog. Chem.*, **2021**,**33**(2):281-302

- [10]Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B. Surface Passivation of Perovskite Film for Efficient Solar Cells. *Nat. Photonics*, **2019,13**(7):460-466
- [11]Liu Z Y, Sun B, Liu X Y, Han J H, Ye H B, Tu Y X, Chen C, Shi T L, Tang Z R, Liao G L. 15% Efficient Carbon Based Planar – Heterojunction Perovskite Solar Cells Using a TiO₂/SnO₂ Bilayer as the Electron Transport Layer. J. Mater. Chem. A, 2018,6(17):7409– 7419
- [12]Zhen C, Wu T T, Chen R Z, Wang L Z, Liu G, Cheng H M. Strategies for Modifying TiO₂ Based Electron Transport Layers to Boost Perovskite Solar Cells. ACS Sustainable Chem. Eng., 2019,7(5):4586-4618
- [13]Liang J, Zhao P Y, Wang C X, Wang Y R, Hu Y, Zhu G Y, Ma L B, Liu J, Jin Z. CsPb_{0.9}Sn_{0.1}IBr₂ Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. *J. Am. Chem. Soc.*, 2017,139(40):14009-14012
- [14]Chen Y C, Meng Q, Zhang L R, Han C B, Gao H L, Zhang Y Z, Yan H. SnO₂-Based Electron Transporting Layer Materials for Perovskite Solar Cells: A Review of Recent Progress. J. Energy Chem., 2019,35: 144-167
- [15]Zhang P, Wu J, Zhang T, Wang Y F, Liu D T, Chen H, Ji L, Liu C H, Ahmad W, Chen Z D, Li S B. Perovskite Solar Cells with ZnO Electron-Transporting Materials. Adv. Mater., 2018,30(3):1703737
- [16]Wali Q, Iqbal Y, Pal B, Lowe A, Jose R. Tin Oxide as an Emerging Electron Transport Medium in Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells, 2018,179:102-117
- [17]Jiang Q, Zhang X W, You J B. SnO₂: A Wonderful Electron Transport Layer for Perovskite Solar Cells. Small, 2018,14(31):1801154
- [18]Yang G, Qin P L, Fang G J, Li G. Tin Oxide (SnO₂) as Effective Electron Selective Layer Material in Hybrid Organic - Inorganic Metal Halide Perovskite Solar Cells. J. Energy Chem., 2018, 27(4): 962 -970
- [19]Gong X, Sun Q, Liu S S, Liao P Z, Shen Y, Gratzel C, Zakeeruddin S M, Gratzel M, Wang M K. Highly Efficient Perovskite Solar Cells with Gradient Bilayer Electron Transport Materials. *Nano Lett.*, 2018,18(6):3969-3977
- [20]Ke W J, Fang G J, Liu Q, Xiong L B, Qin P L, Tao H, Wang J, Lei H W, Li B R, Wan J W, Yang G, Yan Y F. Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. J. Am. Chem. Soc., 2015,137(21): 6730-6733
- [21]Yi H M, Wang D, Mahmud M A, Haque F, Upama M B, Xu C, Duan L P, Uddin A. Bilayer SnO₂ as Electron Transport Layer for Highly Efficient Perovskite Solar Cells. ACS Appl. Energy Mater., 2018, 1 (11):6027-6039
- [22]Lee Y, Paek S, Cho K T, Oveisi E, Gao P, Lee S, Park J S, Zhang Y, Humphry-Baker R, Asiri A M, Nazeeruddin M K. Enhanced Charge Collection with Passivation of the Tin Oxide Layer in Planar Perovskite Solar Cells. J. Mater. Chem. A, 2017,5(25):12729-12734

- [23]Noh Y W, Jin I S, Kim K S, Park S H, Jung J W. Reduced Energy Loss in SnO₂/ZnO Bilayer Electron Transport Layer-Based Perovskite Solar Cells for Achieving High Efficiencies in Outdoor/ Indoor Environments. J. Mater. Chem. A, 2020,8(33):17163-17173
- [24]Wang P Y, Li R J, Chen B B, Hou F H, Zhang J, Zhao Y, Zhang X D. Gradient Energy Alignment Engineering for Planar Perovskite Solar Cells with Efficiency Over 23%. Adv. Mater., 2020, 32(6): 1905766
- [25]Dong H, Pang S Z, Xu Y, Li Z, Zhang Z Y, Zhu W D, Chen D Z, Xi H, Lin Z H, Zhang J C, Hao Y, Zhang C F. Ultrawide Band Gap Oxide Semiconductor-Triggered Performance Improvement of Perovskite Solar Cells via the Novel Ga₂O₃/SnO₂ Composite Electron-Transporting Bilayer. ACS Appl. Mater. Interfaces, 2020, 12(49): 54703-54710
- [26]Lin L Y, Jones T W, Wang J T, Cook A, Pham N D, Duffy N W, Mihaylov B, Grigore M, Anderson K F, Duck B C, Wang H X, Pu J, Li J, Chi B, Wilson G J. Strategically Constructed Bilayer Tin (W) Oxide as Electron Transport Layer Boosts Performance and Reduces Hysteresis in Perovskite Solar Cells. *Small*, **2020**,**16**(12):1901466
- [27]Mali S S, Patil J V, Arandiyan H, Hong C K. Reduced Methylammonium Triple-Cation Rb_{0.05}(FAPbI₃)_{0.95}(MAPbBr₃)_{0.05} Perovskite Solar Cells based on a TiO₂/SnO₂ Bilayer Electron Transport Layer Approaching a Stabilized 21% Efficiency: The Role of Antisolvents. J. Mater. Chem. A, **2019**,7(29):17516-17528
- [28]Cao Q, Li Z, Han J, Wang S J, Zhu J M, Tang H J, Li X Q, Li X H. Electron Transport Bilayer with Cascade Energy Alignment for Efficient Perovskite Solar Cells. Sol. RRL, 2019,3(12):1900333
- [29]Lin L Y, Jones T W, Wang J T W, Cook A, Pham N D, Duffy N W, Mihaylov B, Grigore M, Anderson K F, Duck B C, Wang H X, Pu J, Chi B, Wilson G. Strategically Constructed Bilayer Tin(N) Oxide as Electron Transport Layer Boosts Performance and Reduces Hysteresis in Perovskite Solar Cells. *Small*, 2020,16(12):1901466
- [30]Song J X, Zheng E Q, Bian J, Wang X F, Tian W J, Sanehira Y, Miyasaka T. Low-Temperature SnO₂-Based Electron Selective Contact for Efficient and Stable Perovskite Solar Cells. J. Mater. Chem. A, 2015,3(20):10837-10844
- [31]Liu S, Chen W J, Shen Y X, Wang S H, Zhang M Y, Li Y W, Li Y F. An Intermeshing Electron Transporting Layer for Efficient and Stable CsPbI₂Br Perovskite Solar Cells with Open Circuit Voltage over 1.3 V. J. Mater. Chem. A, 2020,8(29):14555-14565
- [32]Xue R, Zhou X W, Peng S, Xu P F, Wang S L, Xu C, Zeng W, Xiong Y, Liang D. Architecturing Lattice-Matched Bismuthene-SnO₂ Heterojunction for Effective Perovskite Solar Cells. ACS Sustainable Chem. Eng., 2020,8(29):10714-10725
- [33]Yang D, Yang R X, Wang K, Wu C C, Zhu X J, Feng J S, Ren X D, Fang G J, Priya S, Liu S Z. High Efficiency Planar-Type Perovskite Solar Cells with Negligible Hysteresis Using EDTA-Complexed SnO₂. Nat. Commun., 2018,9(1):1-11
- [34]Zhang D L, Tian H M, Bu S X, Yan T T, Ge J F, Lei T, Bi W G, Huang L K, Ge Z Y. Efficient Planar Heterojunction Perovskite Solar Cells with Enhanced FTO/SnO₂ Interface Electronic Coupling.

J. Alloys Compd., 2020,831:154717

- [35]Liu D T, Zheng H L, Wang Y F, Ji L, Chen H, Yang W Y, Chen L, Chen Z, Li S B. Vacancies Substitution Induced Interfacial Dipole Formation and Defect Passivation for Highly Stable Perovskite Solar Cells. Chem. Eng. J., 2020,396:125010
- [36]Zhang W Y, Li Y C, Liu X, Tang D Y, Li X, Yuan X. Ethyl Acetate Green Antisolvent Process for High-Performance Planar Low-Temperature SnO₂-Based Perovskite Solar Cells made in Ambient Air. Chem. Eng. J., 2020,379:122298
- [37]Méndez P F, Muhammed S K M, Barea E M, Masi S, Mora-Seró I. Analysis of the UV-Ozone-Treated SnO₂ Electron Transporting Layer in Planar Perovskite Solar Cells for High Performance and Reduced Hysteresis. Sol. RRL, 2019,3(9):1900191
- [38]Liu C, Zhang L Z, Zhou X Y, Gao J S, Chen W, Wang X Z, Xu B M. Hydrothermally Treated SnO₂ as the Electron Transport Layer in High-Efficiency Flexible Perovskite Solar Cells with a Certificated Efficiency of 17.3%. Adv. Funct. Mater., 2019,29(47):1807604
- [39]Hu M M, Zhang L Z, She S Y, Wu J C, Zhou X Y, Li X N, Wang D, Miao J, Mi G J, Chen H, Tian Y Q, Xu B M, Cheng C. Electron Transporting Bilayer of SnO₂ and TiO₂ Nanocolloid Enables Highly Efficient Planar Perovskite Solar Cells. Sol. RRL, 2019.4(1):1900331
- [40]Yi J, Zhuang J, Liu X C, Wang H Y, Ma Z, Huang D J, Guo Z L, Li

H M. Triphenylamine Hydrophobic Surface Prepared by Low-Temperature Solution Deposition for Stable and High-Efficiency SnO₂ Planar Perovskite Solar Cells. J. Alloys Compd., **2020**, **830**: 154710

- [41]Yi H M, Duan L P, Haque F, Bing J, Zheng J H, Yang Y L, Mo A C H, Zhang Y, Xu C, Conibeer G, Uddin A. Thiocyanate Assisted Nucleation for High Performance Mix-Aation Perovskite Solar Cells with Improved Stability. J. Power Sources, 2020,466:228320
- [42]Cao Q, Li Z, Han J, Wang S J, Zhu J M, Tang H J, Li X Q, Li X H. Electron Transport Bilayer with Cascade Energy Alignment for Efficient Perovskite Solar Cells. Sol. RRL, 2019,3(12):1900333
- [43]Pham N D, Zhang C M, Tiong V T, Zhang S L, Will G, Bou A, Bisquert J, Shaw P E, Du A, Wilson G J, Wang H X. Tailoring Crystal Structure of FA_{0.83}Cs_{0.17}PbI₃ Perovskite through Guanidinium Doping for Enhanced Performance and Tunable Hysteresis of Planar Perovskite Solar Cells. Adv. Funct. Mater., **2018,29**(1):1806479
- [44]Zhao Z, Gu F D, Rao H X, Ye S Y, Liu Z W, Bian Z Q, Huang C H. Metal Halide Perovskite Materials for Solar Cells with Long-Term Stability. Adv. Energy Mater., 2019,9(3):1802671
- [45]Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M. Trapped Charge-Driven Degradation of Perovskite Solar Cells. *Nat. Commun.*, 2016,7:13422