# 两个Gd₂配合物的晶体结构及磁制冷性质

赵晋宇<sup>1</sup> 张雪瑾<sup>1</sup> 杨晓敏<sup>1</sup> 温娇娇<sup>1</sup> 华宇鹏\*.<sup>2</sup> (<sup>1</sup>太原师范学院化学系,晋中 030619) (<sup>2</sup>鄂尔多斯应用技术学院,鄂尔多斯 017000)

**摘要:**使用多齿席夫碱配体(H<sub>2</sub>L=pyridine-2-carboxylic acid(3,5-di-*tert*-butyl-2-hydroxy-benzylidene)-hydrazide)分别与 Gd(dbm)<sub>3</sub>· 2H<sub>2</sub>O(Hdbm=二苯甲酰基甲烷)及 Gd(NO)<sub>3</sub>·6H<sub>2</sub>O 反应,通过溶剂热法得到了 2 个新的 Gd<sub>2</sub>配合物[Gd<sub>2</sub>(L)<sub>2</sub>(dbm)<sub>2</sub>(C<sub>2</sub>H<sub>5</sub>OH)<sub>2</sub>] (1)和 [Gd<sub>2</sub>(L)<sub>2</sub>(HL)<sub>2</sub>(DMF)]·2CH<sub>3</sub>CN (2)(DMF=*N*,*N*-二甲基甲酰胺),并对其结构与磁性质进行了系统的研究。单晶结构分析表明配合 物 1 中的每个中心 Gd(m)离子均为 8 配位,其配位几何构型为略微变形的三角十二面体,相邻的中心 Gd(m)离子通过 2 个 $\mu_2$ -O 连 接形成了平行四边形的 Gd<sub>2</sub>O<sub>2</sub>核心;配合物 2 中的每个中心 Gd(m)离子均为 9 配位,其配位几何构型为扭曲的球形单帽四方反棱 柱,相邻的中心 Gd(m)离子通过 3 个 $\mu_2$ -O 连接形成了三角双锥形的 Gd<sub>2</sub>O<sub>3</sub>核心。磁性测试表明配合物 1 和 2 具有磁制冷性质,其 最大磁熵变(-Δ*S*<sub>m</sub>)分别为 20.16 J·K<sup>-1</sup>·kg<sup>-1</sup>(*T*=2.0 K, Δ*H*=70 kOe)和 17.14 J·K<sup>-1</sup>·kg<sup>-1</sup>(*T*=2.0 K, Δ*H*=70 kOe)。

关键词: Gd₂配合物; 晶体结构; 磁性; 磁制冷性质
 中图分类号: 0614.33<sup>+</sup>9
 文献标识码: A
 文章编号: 1001-4861(2022)05-0921-09
 DOI: 10.11862/CJIC.2022.094

# Crystal Structures and Magnetic Refrigeration Properties of Two Gd<sub>2</sub> Complexes

ZHAO Jin-Yu<sup>1</sup> ZHANG Xue-Jin<sup>1</sup> YANG Xiao-Min<sup>1</sup> WEN Jiao-Jiao<sup>1</sup> HUA Yu-Peng<sup>\*,2</sup> (<sup>1</sup>Department of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619, China) (<sup>2</sup>Ordos Institute of Technology, Ordos, Inner Mongolia 017000, China)

**Abstract:** By utilizing a polydentate Schiff base ligand (H<sub>2</sub>L=pyridine-2-carboxylic acid (3,5-di-*tert*-butyl-2-hydroxybenzylidene)-hydrazide), reacting with Gd(dbm)<sub>3</sub>·2H<sub>2</sub>O (Hdbm=dibenzoylmethane) and Gd(NO)<sub>3</sub>·6H<sub>2</sub>O, respectively; two new Gd<sub>2</sub> complexes formulated as [Gd<sub>2</sub>(L)<sub>2</sub>(dbm)<sub>2</sub>(C<sub>2</sub>H<sub>5</sub>OH)<sub>2</sub>] (**1**) and [Gd<sub>2</sub>(L)<sub>2</sub>(HL)<sub>2</sub>(DMF)]·2CH<sub>3</sub>CN (**2**) (DMF=*N*, *N*-dimethylformamide) have been obtained by using solvothermal method. The crystal structures and magnetic properties of the two Gd<sub>2</sub> complexes have been systematically studied. The crystal structures study reveals that each eightcoordinate Gd<sup>3+</sup> ion in **1** possesses a distorted triangular dodecahedron; the two central Gd(III) ions are connected by two  $\mu_2$ -O, resulting in a rhombic-shaped Gd<sub>2</sub>O<sub>2</sub> core. However, for **2**, each central Gd(III) ion is nine-coordinate and their coordination configurations can be described as distorted spherical capped square antiprism, and the two central Gd(III) ions are connected by three  $\mu_2$ -O forming a triangular biconical-shaped Gd<sub>2</sub>O<sub>3</sub> core. Magnetic investigations showed that the two Gd<sub>2</sub> complexes displayed magnetic refrigeration properties with the magnetic entropy ( $-\Delta S_m$ ) of 20.16 J·K<sup>-1</sup>·kg<sup>-1</sup> for **1** and 17.14 J·K<sup>-1</sup>·kg<sup>-1</sup> for **2** at  $\Delta H$ =70 kOe and *T*=2.0 K. CCDC: 2111657, **1**; 2111658, **2**.

Keywords: Gd<sub>2</sub> complexes; crystal structures; magnetic properties; magnetic refrigeration properties

收稿日期:2021-09-24。收修改稿日期:2022-02-23。 \*通信联系人。E-mail:yp\_hua@126.com

# 0 Introduction

In recent years, the studies of lanthanide-based compounds have attracted increasing attention of chemists and material scientists not only due to their beauty and fascinating crystal structures<sup>[1]</sup> but also because of the potential applications in functional materials, including interesting magnetic properties, luminescence properties, and catalysis<sup>[2-4]</sup>. Among these potential applications of lanthanide - based compounds, the molecular-based magnetic material is one of the research hotspots for inorganic chemistry and material chemistry<sup>[5]</sup>, and magnetic refrigeration and singlemolecule magnets (SMMs) are particularly attractive<sup>[6-9]</sup>. Key to the potential magnetic refrigeration application of a molecular-based magnetic material is its large magnetocaloric effect (MCE)<sup>[10]</sup>, and an excellent magnetic refrigeration material featuring large MCE should possess negligible magnetic anisotropy and a large magnetic density<sup>[11]</sup>. Hence, the isotropic Gd(III) ion with a high spin state (S=7/2) is the best candidate for designing and constructing Gd(III)-based compounds, which would be a promising magnetic refrigerant material to perform significant MCE [12]. Based on this, lots of poly-nuclear or high-nuclear Gd(III)-based clusters with fascinating structures and larger MCE have been reported over the past decade<sup>[13-16]</sup>. It is worth mentioning that Long, Tong, and Zheng' s group have conducted outstanding work on the magnetic refrigeration materials of Gd(III)based clusters<sup>[17-19]</sup>. These studies inspire and promote the synthesis of lanthanide-based compounds with outstanding and excellent magnetic refrigeration materials.

It is well-known that the Schiff base ligand is a type of classical ligand. In the past decade, lots of Ln( $\mathbb{II}$ )-based compounds with novel topologies and showing outstanding magnetic properties have been constructed by using Schiff base ligands<sup>[20-23]</sup>. Considering the advantage of Schiff base ligands, we design and synthesize an organic polydentate Schiff base ligand (H<sub>2</sub>L= pyridine-2-carboxylic acid (3,5-di-*tert*-butyl-2-hydroxy-benzylidene) - hydrazide, Scheme 1) which possesses abundant coordination sites, strong chelating ability, and various coordination patterns. When H<sub>2</sub>L reacted



报

Scheme 1 Structure of organic polydentate Schiff base H<sub>2</sub>L

with  $Gd(dbm)_3 \cdot 2H_2O$  (Hdbm=dibenzoylmethane) or  $Gd(NO)_3 \cdot 6H_2O$ , two new  $Gd_2$  complexes with the molecular formulas  $[Gd_2(L)_2(dbm)_2(C_2H_5OH)_2]$  (1) and  $[Gd_2(L)_2(HL)_2(DMF)] \cdot 2CH_3CN$  (2) (DMF=N, N-dimethylformamide) have been synthesized through a solvothermal method. The structural and magnetic properties of 1 and 2 were deeply investigated and discussed. The magnetic study revealed that complexes 1 and 2 show MCE with  $-\Delta S_m$  of 20.16 J·K<sup>-1</sup>·kg<sup>-1</sup> for 1 and 17.14 J·K<sup>-1</sup>·kg<sup>-1</sup> for 2 at  $\Delta H$ =70 kOe and T=2.0 K.

# **1** Experimental

## 1.1 Materials and measurements

Gadolinium nitrate hexahydrate (Gd(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O) was bought from Energy Chemical Co., Ltd. DMF, ethanol, acetonitrile, and other solvents were purchased from Fuchen chemical corporation. Hdbm, picolinohydrazide, and 3,5-di-*tert*-butylsalicylaldehyde were purchased from Aladdin Reagent (Shanghai) Co., Ltd. Gd(dbm)<sub>3</sub>·2H<sub>2</sub>O and polydentate Schiff base ligand H<sub>2</sub>L were prepared by using an already reported literature method<sup>[24-25]</sup>. The elemental analyses (C, H, and N) of complexes **1** and **2** were performed on a PerkinElmer 240 CHN elemental analyzer. Magnetic properties for complexes **1** and **2** were measured using a Quantum Design MPMS-XL7 and a PPMS-9 ACMS magnetometer. Diamagnetic corrections were estimated with Pascal's constants for all atoms<sup>[26]</sup>.

## 1.2 Syntheses of complexes 1 and 2

 $[Gd_2(L)_2(dbm)_2(C_2H_5OH)_2]$  (1):  $H_2L$  (0.05 mmol), Gd(dbm)\_3·2H\_2O (0.05 mmol), ethanol (6.0 mL), and acetonitrile (5.0 mL) were enclosed in a glass vial (20 mL), and then the mixture was heated to 70 °C and keep at this temperature for 72 h, and then the temperature was dropped to room temperature slowly. Yellow block crystals suitable for X-ray diffraction were obtained. Yields based on  $Gd(dbm)_3 \cdot 2H_2O$ : 41%. Elemental analysis Calcd. for  $C_{76}H_{84}Gd_2N_6O_{10}(\%)$ : C 58.61, H 5.40, N 5.40; Found(%): C 58.65, H 5.37, N 5.44.

 $[Gd_2(L)_2(HL)_2(DMF)] \cdot 2CH_3CN$  (2):  $H_2L$  (0.03 mmol),  $Gd(NO_3)_3 \cdot 6H_2O$  (0.03 mmol), ethanol (3.0 mL), DMF (2.0 mL), and acetonitrile (2.0 mL) were added to a three flask and stirred at room temperature for about 3 h. Then the mixture was sealed in a 15 mL glass bottle and heated to 80 °C to react for 48 h and then slowly cooled to room temperature subsequently. Yellow block crystals suitable for X - ray diffraction were obtained. Yields based on  $Gd(NO_3)_3 \cdot 6H_2O$ : 32%. Elemental analysis Calcd. for  $C_{91}H_{115}Gd_2N_{15}O_9(\%)$ : C 58.16, H 6.13, N 11.19; Found(%): C 58.11, H 6.17, N 11.25.

## 1.3 X-ray crystallography

The crystallographic diffraction data for complexes 1 and 2 were collected on a Bruker SMART APEX II CCD diffractometer equipped with graphite monochromatized Mo  $K\alpha$  radiation ( $\lambda = 0.071$  073 nm) by using  $\varphi$ - $\omega$  scan mode. Multi-scan absorption correction was applied to the intensity data using the SADABS program. The structures were solved by direct methods and refined by full-matrix least-squares on  $F^2$  using the SHELXTL (Olex 2) program<sup>[27]</sup>. All non-hydrogen atoms were refined anisotropically. All the other H atoms were positioned geometrically and refined using a riding model. Due to the existence of disordered solvent molecules in the crystals of 1 and 2, we remove the disordered solvent molecules by using PLATON/ SQUEEZE program. To determine the specific number of free solvent molecules, the thermogravimetric analysis (TGA) of the crystal samples for 1 and 2 have been measured. Details of the crystal data and structure refinement parameters for complexes 1 and 2 are summarized in Table 1, and selected bond lengths and angles of complexes 1 and 2 are listed in Table S1 and S2 (Supporting information).

CCDC: 2111657, 1; 2111658, 2.

| Parameter                                     | 1                                                            | 2                                                            |
|-----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| Formula                                       | $C_{76}H_{84}Gd_2N_6O_{10}$                                  | $C_{91}H_{115}Gd_2N_{15}O_9$                                 |
| Formula weight                                | 1 555.99                                                     | 1 877.42                                                     |
| <i>T /</i> K                                  | 150.0                                                        | 150.0                                                        |
| Crystal system                                | Monoclinic                                                   | Monoclinic                                                   |
| Space group                                   | $P2_1/c$                                                     | $P2_1/c$                                                     |
| <i>a</i> / nm                                 | 1.230 26(2)                                                  | 2.068 43(6)                                                  |
| <i>b</i> / nm                                 | 1.536 69(2)                                                  | 1.985 86(5)                                                  |
| <i>c</i> / nm                                 | 1.869 93(3)                                                  | 2.467 71(8)                                                  |
| β / (°)                                       | 97.916 1(6)                                                  | 91.634 0(11)                                                 |
| $V / \text{nm}^3$                             | 3.501 47(9)                                                  | 10.132 3(5)                                                  |
| Ζ                                             | 2                                                            | 4                                                            |
| Crystal size / mm                             | 0.36×0.21×0.14                                               | 0.26×0.13×0.11                                               |
| $D_{\rm c}  /  ({\rm g} \cdot {\rm cm}^{-3})$ | 1.476                                                        | 1.204                                                        |
| $\mu$ / mm <sup>-1</sup>                      | 1.940                                                        | 1.353                                                        |
| Limiting indices                              | $-15 \leq h \leq 14, -19 \leq k \leq 19, -23 \leq l \leq 23$ | $-25 \leq h \leq 25, -24 \leq k \leq 24, -30 \leq l \leq 30$ |
| Reflection collected                          | 44 308                                                       | 144 368                                                      |
| Unique                                        | 7 178                                                        | 20 725                                                       |
| Parameter                                     | 434                                                          | 1 054                                                        |
| $R_{ m int}$                                  | 0.036 5                                                      | 0.084 8                                                      |
| GOF on $F^2$                                  | 1.042                                                        | 1.082                                                        |
| $R_1, wR_2 \left[I{>}2\sigma(I)\right]$       | 0.023 6, 0.056 6                                             | 0.046 1, 0.108 9                                             |
| $R_1,wR_2$ (all data)                         | 0.030 8, 0.060 9                                             | 0.068 7, 0.119 9                                             |

 Table 1
 Crystal data and structure refinement parameters for 1 and 2

## 2 Results and discussion

#### 2.1 Crystal structures of complexes 1 and 2

Single - crystal X - ray diffraction analyses reveal that both complexes 1 and 2 crystallize in the monoclinic space group  $P2_1/c$  (Table 1). As shown in Fig. 1, the structure of **1** contains two  $Gd(\mathbb{II})$  ions, two  $L^{2-}$  ions, two dbm<sup>-</sup> ions, and two coordinated C<sub>2</sub>H<sub>5</sub>OH molecules. Each central Gd(III) ion in complex 1 is coordinated by six oxygen atoms (01, 01a, 02, 03, 04, and 05) and two nitrogen atoms (N1 and N3) forming an O<sub>6</sub>N<sub>2</sub> coordination environment (Fig.S1). As shown in Fig.S2, the eight-coordinate Gd1 ion shows a distorted triangular dodecahedron  $(D_{2h})$  coordination geometry. It is also confirmed by using SHAPE 2.0 software (Table 2)<sup>[28]</sup>. The coordination modes of L2- and dbm- are shown in Fig. 2. L<sup>2-</sup> adopts a quad - dentate chelation model to connect the central Gd(III) ion, and dbm<sup>-</sup> adopts a bidentate chelation model to connect the central Gd(III) ion. The Gd1 and Gd1a ions are connected by two  $\mu_2$ -O (O1 and O1a) atoms forming a parallelogram Gd<sub>2</sub>O<sub>2</sub> core. The Gd1…Gd1a distance is 0.405 2(9) nm, which is slightly larger than those of some reported Gd<sub>2</sub> complexes<sup>[29-32]</sup>. In addition, the Gd1-O1-Gd1a angle in the  $Gd_2O_2$  core is 114.90(7)°. In **1**, the Gd—O distances fall in a range of 0.222 3(2)-0.243 1(7) nm, and the Gd1—N1, Gd1—N3 bond lengths are 0.257 9(2) and 0.247 6(2) nm, respectively. The O—Gd—O bond angles fall in a range of  $65.09(7)^{\circ}$ -146.46(6)°.



H atoms are omitted for clarity; Symmetry code: a: 1-x, 1-y, 1-z

Fig.1 Molecular structure of complex 1 shown with 50% probability displacement ellipsoids

Different from 1, complex 2 is mainly composed of two Gd (III) ions, two  $L^{2-}$  ions, two  $HL^{-}$  ions, and one coordinated DMF molecule (Fig. 3). Both Gd1 and Gd2 ions in complex 2 are nine-coordinate, and each Gd(III) ion is coordinated by six oxygen atoms and three nitrogen atoms forming an N<sub>3</sub>O<sub>6</sub> coordination environment (Fig. S3). Accordingly, as shown in Fig. S4, both of the nine-coordinate Gd(III) centers lie in a distorted spherical capped square antiprism ( $C_{4v}$ ) which also can be cal-

Table 2 Gd<sup>™</sup> ion geometry analysis by SHAPE 2.0 for 1\*

| Gd <sup>Ⅲ</sup> ion | D <sub>4d</sub> SAPR-8 | D <sub>2d</sub> TDD-8 | C <sub>2v</sub> JBTPR-8 | $C_{2\nu}$ BTPR-8 | D <sub>2d</sub> JSD-8 |
|---------------------|------------------------|-----------------------|-------------------------|-------------------|-----------------------|
| Gd1                 | 3.696                  | 2.053                 | 4.054                   | 2.901             | 5.227                 |





H atoms of C—H bonds are omitted for clarity; Symmetry code: a: 1-x, 1-y, 1-zFig.2 Coordination mode of  $L^{2-}$  (a) and dbm<sup>-</sup> (b) in **1** 

culated by using SHAPE 2.0 software (Table 3). There are two coordination modes for  $L^{2-}$  and  $HL^{-}$  in **2** (Fig.4): quad-dentate or tri-dentate chelation model to connect the central Gd(III) ion, respectively. The two Gd(III) ions are connected by three  $\mu_2$ -O (O3, O5, and O9) atoms forming a triangular biconical-shaped Gd<sub>2</sub>O<sub>3</sub> core. The distance of the two central Gd(III) ions is 0.392 3(3) nm, which is smaller than that of complex **1**. The Gd1— O3—Gd2, Gd1—O9—Gd2, and Gd1—O9—Gd2 angles in the Gd<sub>2</sub>O<sub>3</sub> core are 105.68(3)°, 98.64(6)°, and 106.95(4)°, respectively, which are also smaller than those of complex **1**. The Gd—O bond lengths are in a range of 0.225 3(3)-0.260 7(4) nm, while the average Gd—N distance is 0.261 2(1) nm. The O—Gd—O bond angles fall in a range of  $61.96(10)^{\circ}-149.73(12)^{\circ}$ .



H atoms are omitted for clarity

Fig.3 Molecular structure of the complex 2 shown with 50% probability displacement ellipsoids

| Table 3     | Gd <sup>Ⅲ</sup> ion geometry analysis by SHAPE 2.0 for 2* |              |            |  |
|-------------|-----------------------------------------------------------|--------------|------------|--|
| C. ICSAPR-9 | C. CSAPR-9                                                | Da. ITCTPR-9 | Da TCTPR-9 |  |

| Gd <sup>Ⅲ</sup> ion | $C_{4\nu}$ JCSAPR-9 | $C_{4v}$ CSAPR-9 | D <sub>3h</sub> JTCTPR-9 | $D_{3h}$ TCTPR-9 | $C_s$ MFF-9 |
|---------------------|---------------------|------------------|--------------------------|------------------|-------------|
| Gd1                 | 1.93                | 1.301            | 3.129                    | 1.611            | 1.588       |
| Gd2                 | 2.165               | 1.492            | 3.521                    | 1.824            | 1.604       |

\*JCSAPR-9=capped square antiprism J10; CSAPR-9=spherical capped square antiprism; JTCTPR-9=tricapped trigonal prism J51; TCTPR-9=spherical tricapped trigonal prism; MFF-9=muffin.



H atoms of C—H bonds are omitted for clarity

Fig.4 Coordination mode of  $L^{2-}$  (a) and  $HL^{-}$  (b) in 2

#### 2.2 TGA of complexes 1 and 2

To study the thermal stabilities of complexes 1 and 2, TGA was performed and the curves are shown in Fig.S5 and S6. For 1, the weight loss of 5.78% (Calcd. 5.91%) between 26 and 285 °C can be attributed to the loss of two coordinated EtOH molecules. After that complex 1 started to decompose. For 2, the weight loss of 4.11% from 26 to 245 °C is attributed to the loss of two free CH<sub>3</sub>CN molecules (Calcd. 4.36%). Thereafter, a weight loss of 3.92% (Calcd. 3.88%) occurred, which is attributed to the loss of a coordinated DMF molecule. Subsequently, complex 2 gradually decomposed in a temperature range of 280-800 °C.

#### 2.3 Magnetic properties of complexes 1 and 2

Direct current (dc) magnetic susceptibility measurements for the two Gd<sub>2</sub> complexes **1** and **2** were performed on polycrystalline samples during a temperature range of 300.0 - 2.0 K under an applied field of 1 kOe. The  $\chi_{\rm M}T$  vs T plots for complexes **1** and **2** are shown in Fig.5. The room-temperature  $\chi_{\rm M}T$  products of **1** and **2** were 15.80 and 15.78 cm<sup>3</sup>·K·mol<sup>-1</sup>, respectively, which are in good agreement with the expected value (15.76 cm<sup>3</sup>·K·mol<sup>-1</sup>) for two uncoupled Gd (III) ions ( $^{8}S_{7/2}$ , g=2). As the temperature decreased, the  $\chi_{\rm M}T$ values of **1** and **2** slowly declined during the temperature range of 300.0-25.0 K. Thereafter, the  $\chi_{\rm M}T$  values



Fig.5 Temperature dependence of  $\chi_{\rm M}T$  products at 1.0 kOe for **1** (a) and **2** (b)

of **1** and **2** quickly dropped to a minimum of 11.58 and 5.68 cm<sup>3</sup>·K·mol<sup>-1</sup> at 2.0 K. The downward trend of the  $\chi_{\rm M}T$  vs *T* curves implies that there is an antiferromagnetic (AF) interaction between adjacent Gd(III) ions in the two Gd<sub>2</sub> complexes **1** and **2**<sup>[33]</sup>.

The Curie-Weiss law was used for fitting the magnetic susceptibility of complexes 1 and 2 (Fig. S7 and S8). The two parameters,  $C=15.84 \text{ cm}^3 \cdot \text{K} \cdot \text{mol}^{-1}$  and  $\theta = -1.84 \text{ K}$  ( $R^2=0.999 \text{ 9}$ ) for 1 and  $C=15.91 \text{ cm}^3 \cdot \text{K} \cdot \text{mol}^{-1}$  and  $\theta = -5.43 \text{ K}$  ( $R^2=0.999 \text{ 51}$ ) for 2 were obtained. The negative  $\theta$  values of 1 and 2 further suggest that there is an antiferromagnetic interaction between adjacent Gd(III) ions in 1 and  $2^{[34]}$ .

The magnetization data for the two  $Gd_2$  complexes **1** and **2** were collected at 2.0-10.0 K in the 0-70 kOe field. As depicted in Fig.S9, the *M* values for complexes **1** and **2** rapidly increased below 20 kOe and then steadily increased to 14.13*N* $\beta$  for **1** and 14.07*N* $\beta$  for **2** at 70 kOe, which are very close to the saturation value of 14*N* $\beta$  for two isolated Gd(III) (S=7/2, g=2) ions.

According to the previously reported literature<sup>[35-37]</sup>, because of the larger isotropic and high-spin ground state of Gd(III) ion, the MCE of both 1 and 2 was studied. The maximum magnetic entropy change  $(-\Delta S_m)$  of **1** and **2** were calculated by using the Maxwell equation:  $\Delta S_{\rm m}(T) = \int [\partial M(T,H)/\partial T]_{H} dH^{[38]}$ . The  $-\Delta S_{\rm m}$ vs *T* curves of **1** and **2** are shown in Fig.6. The observed  $-\Delta S_{\rm m}$  values of **1** and **2** were 20.16 and 17.14 J·K<sup>-1</sup>· kg<sup>-1</sup> at  $\Delta H$ =70 kOe and T=2.0 K, which were smaller than the theoretical values of 22.22  $J \cdot K^{-1} \cdot kg^{-1}$  for 1 and 18.83  $J \cdot K^{-1} \cdot kg^{-1}$  for 2 (based on the equation  $-\Delta S_m$  $=2R\ln(2S+1)/M_r$ ,  $S_{Gd}=7/2$ , and  $R=8.314 \text{ J}\cdot\text{mol}^{-1}\cdot\text{K}^{-1}$ ). The difference between experimental and theoretical - $\Delta S_{
m m}$  values may be due to the antiferromagnetic interaction between  $Gd(\mathbb{II})$  ions in 1 and  $2^{[39]}$ . To better compare and display the  $-\Delta S_m$  values of Gd<sub>2</sub> complexes, the  $-\Delta S_{\rm m}$  values of recently reported dinuclear Gd(III)based complexes are listed in Table 4<sup>[40-49]</sup>. The  $-\Delta S_{\rm m}$  of 2 was smaller than some reported Gd<sub>2</sub> complexes, however, it is worth mentioning that the  $-\Delta S_m$  of complex **1** 



Fig.6 Plots of  $-\Delta S_{\rm m}$  vs *T* for **1** (a) and **2** (b)

| Dinuclear Gd(III)-based complex                                                                              | $M_{\rm r}$ | Magnetic interaction                                                   | $-\Delta S_{\rm m}$ / (J · K <sup>-1</sup> · kg <sup>-1</sup> ) | $\Delta H$ / kOe | Ref.      |
|--------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------|-----------------------------------------------------------------|------------------|-----------|
| $[\mathrm{Gd}_2(\mathrm{bfa})_4(\mathrm{L})_2]\boldsymbol{\cdot}\mathrm{CH}_2\mathrm{Cl}_2{}^a$              | 1 747.16    | AF (no $J$ value reported)                                             | 18.5                                                            | 70               | [40]      |
| $[Gd_2(hfac)_4(L)_2]^b$                                                                                      | 1 795.07    | AF $(J=-0.07 \text{ cm}^{-1})$                                         | 15.00                                                           | 80               | [41]      |
| $[\mathrm{Gd}(\mathrm{hfac})_2(\mathrm{L})]_2^{\mathrm{c}}$                                                  | 1 693.37    | AF $(J=-0.04 \text{ cm}^{-1})$                                         | 19.94                                                           | 70               | [42]      |
| $[Gd_2(dbm)_4(L)_2]^d$                                                                                       | 1791.99     | AF (no $J$ value reported)                                             | 14.36                                                           | 70               | [43]      |
| $[Gd_2(hfac)_4(L1)_2]^e$                                                                                     | 1 665.32    | AF $(J=-0.13 \text{ cm}^{-1})$                                         | 17.66                                                           | 70               | [44]      |
| $[Gd_2(hfac)_4(L2)_2]^f$                                                                                     | 1 693.37    | AF $(J=-0.10 \text{ cm}^{-1})$                                         | 14.81                                                           | 70               | [44]      |
| $[Gd_2(L1)_2(tmhd)_2(CH_3O)_2]^{\rm g}$                                                                      | 1 670.21    | AF (no $J$ value reported)                                             | 18.59                                                           | 70               | [45]      |
| $[Gd(bfa)_2(L)]_2{}^h$                                                                                       | 1 681.61    | AF (no $J$ value reported)                                             | 17.78                                                           | 70               | [46]      |
| $[\mathrm{Gd}_2(\mathrm{L})_2(\mathrm{dbm})_2(\mathrm{H}_2\mathrm{O})_2]\!\cdot\!\mathrm{CH}_3\mathrm{OH}^i$ | 1 395.57    | AF $(J=-0.045 \text{ cm}^{-1})$                                        | 23.2                                                            | 70               | [47]      |
| $[Gd_2(dbm)_2(L)_2(CH_3OH)_2]^j$                                                                             | 1 445.76    | $\operatorname{AF}(\operatorname{no} J \operatorname{value reported})$ | 21.1                                                            | 70               | [48]      |
| $[\mathrm{Gd}(\mathrm{OAc})_3(\mathrm{H}_2\mathrm{O})_2]_2{\boldsymbol{\cdot}}4\mathrm{H}_2\mathrm{O}$       | 2 474.95    | F $(J/k_{\rm B}=0.068(2)$ K)                                           | 40                                                              | 70               | [49]      |
| Complex 1                                                                                                    | 1 555.99    | AF (no $J$ value reported)                                             | 20.16                                                           | 70               | This work |
| Complex 2                                                                                                    | 1 836.42    | AF (no J value reported)                                               | 17.14                                                           | 70               | This work |

Table 4 Comparison of  $-\Delta S_m$  values for complexes 1, 2 and some reported Gd<sub>2</sub> complexes

 $\label{eq:heat} {}^{a}\ HL=2-(((4-methylphenyl)imino)methyl)-8-hydroxyquinoline; {}^{b}\ HL=2-((4-bromo-phenylimino)-methyl)-quinolin-8-ol; {}^{c}\ HL=2-((4-ethylphenyl)imino)methyl)-8-hydroxyquinoline; {}^{e}\ HL1=2-((4-methylaniline-imino)methyl)-8-hydroxyquinoline; {}^{e}\ HL1=2-((4-methylaniline)-imino)methyl)-8-hydroxyquinoline; {}^{e}\ HL1=2-((3,4-dimethylaniline)-imino)methyl)-8-hydroxyquinoline; {}^{i}\ HL1=2-((3,4-dimethylaniline)-imino)methyl)-8-hydroxyquinoline; {}^{i}\ HL1=2-((3,4-dimethylaniline)-imino)methyl)-8-hydroxyquinoline; {}^{i}\ HL1=2-((1E)-(((pyridin-2-yl)formamido)imino)methyl)benzoic acid; {}^{j}\ HL=N'-(4-(diethylamino)salicylaldehyde)pyridyl-2-carbohydrazide.$ 

was larger than those of some dinuclear Gd( $\mathbb{II}$ )-based complexes. The reason for the larger  $-\Delta S_{\rm m}$  of complex **1** may be due to the weak antiferromagnetic interaction and the smaller  $M_{\rm s}/N_{\rm Gd}$  ratio of **1**.

## **3** Conclusions

In summary, we have synthesized two new  $Gd_2$  complexes  $[Gd_2(L)_2(dbm)_2(C_2H_5OH)_2]$  (1) and  $[Gd_2(L)_2(HL)_2(DMF)] \cdot 2CH_3CN$  (2). Both complexes 1 and 2 are binuclear structures with different coordination environments of central  $Gd(\mathbb{II})$  ions. Magnetic measurements imply that the two  $Gd_2$  complexes display magnetic refrigeration properties. Our present work provides a new approach to design and construct  $Gd(\mathbb{II})$ -based magnetic refrigeration materials. Magnetic refrigeration studies of other poly-nuclear or high-nuclear  $Gd(\mathbb{II})$ -based clusters are underway in our group.

Supporting information is available at http://www.wjhxxb.cn

#### **References:**

[1]Li X Y, Su H F, Li Q W, Feng R, Bai H Y, Chen H Y, Xu J, Bu X H. A Giant Dy<sub>76</sub> Cluster: A Fused Bi-nanopillar Structural Model for Lanthanide Clusters. Angew. Chem. Int. Ed., 2019,58:10184-10188

- [2]Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y. Lanthanide Double - Decker Complexes Functioning as Magnets at the Single -Molecular Level. J. Am. Chem. Soc., 2003,125:8694-8695
- [3]Mahata P, Mondal S K, Singha D K, Majee P. Luminescent Rare-Earth-Based MOFs as Optical Sensors. *Dalton Trans.*, 2017,46:301-328
- [4]Dong J, Cui P, Shi P F, Cheng P, Zhao B. Ultrastrong Alkali-Resisting Lanthanide-Zeolites Assembled by [Ln<sub>60</sub>] Nanocages. J. Am. Chem., Soc., 2015,137:15988-15991
- [5]Zheng X Y, Kong X J, Zheng Z P, Long L S, Zheng L S. High-Nuclearity Lanthanide - Containing Clusters as Potential Molecular Magnetic Coolers. Acc. Chem. Res., 2018,51:517-525
- [6]Wang W M, Wu Z L, Cui J Z, Molecular Assemblies from Linear-Shaped Ln<sub>4</sub> Clusters to Ln<sub>8</sub> Clusters Using Different β-Diketonates: Disparate Magnetocaloric Effects and Single-Molecule Magnet Behaviours. *Dalton Trans.*, 2021,50:12931-12943
- [7]Xu C Y, Wu Z L, Fan C J, Yan L L, Wang W M, Ji B M. Synthesis of Two Lanthanide Clusters Ln<sup>III</sup><sub>4</sub> (Gd<sub>4</sub> and Dy<sub>4</sub>) with [2×2] Square Grid Shape: Magnetocaloric Effect and Slow Magnetic Relaxation Behaviors. J. Rare Earths, **2021**,**39**:1082-1088
- [8]Bar A K, Kalita P, Singh M K, Rajaraman G, Chandrasekhar V. Low-Coordinate Mononuclear Lanthanide Complexes as Molecular Nanomagnets. *Coord. Chem. Rev.*, 2018,367:163-216
- [9]Wang W M, Qiao W Z, Zhang H X, Wang S Y, Nie Y Y, Chen H M, Liu Z, Gao H L, Cui J Z, Zhao B. Structures and Magnetic Properties of Several Phenoxo-O Bridged Dinuclear Lanthanide Complexes: Dy Derivatives Displaying Substituent Dependent Magnetic Relaxation Behavior. *Dalton Trans.*, 2016,45:8182-8191
- [10]Luo X M, Hu Z B, Lin Q F, Cheng W W, Cao J P, Cui C H, Mei H, Song Y, Xu Y. Exploring the Performance Improvement of Magneto-

caloric Effect Based Gd-Exclusive Cluster Gd<sub>60</sub>. J. Am. Chem. Soc., **2018,140**:11219-11222

- [11]Chen Y C, Qin L, Meng Z S, Yang D F, Wu C, Fu Z D, Zheng Y Z, Liu J L, Tarasenko R, Orendác M, Prokleška J, Sechovský V, Tong M L. Study of a Magnetic - Cooling Material Gd(OH)CO<sub>3</sub>. J. Mater. Chem. A, 2014,2:9851-9858
- [12]Zhang Z M, Zangana K H, Kostopoulos A K, Tong M L, Winpenny R E P. A Pseudo-Icosahedral Cage {Gd<sub>12</sub>} Based on Aminomethylphosphonate. *Dalton Trans.*, 2016,45:9041-9044
- [13]Zheng X Y, Jiang Y H, Zhuang G L, Liu D P, Liao H G, Kong X J, Long L S, Zheng L S. A Gigantic Molecular Wheel of {Gd<sub>140</sub>}: A New Member of the Molecular Wheel Family. J. Am. Chem. Soc., 2017, 139:18178-18181
- [14]Wang W M, Yue R X, Gao Y, Wang M J, Hao S S, Shi Y, Kang X M, Wu Z L. Large Magnetocaloric Effect and Remarkable Single-Molecule-Magnet Behavior in Triangle - Assembled Ln<sup>III</sup><sub>6</sub> Clusters. New J. Chem., 2019,43:16639-16646
- [15]Zheng X Y, Peng J B, Kong X J, Long L S, Zheng L S. Mixed-Anion Templated Cage - like Lanthanide Clusters: Gd<sub>27</sub> and Dy<sub>27</sub>. *Inorg. Chem. Front.*, 2016,3:320-325
- [16]Guo F S, Chen Y C, Mao L L, Lin W Q, Leng J D, Tarasenko R, Orendác M, Prokleška J, Sechovský V, Tong M L. Anion-Templated Assembly and Magnetocaloric Properties of a Nanoscale {Gd<sub>38</sub>} Cage versus a {Gd<sub>48</sub>} Barrel. *Chem. Eur. J.*, **2013**,**19**:14876-14885
- [17]Peng J B, Kong X J, Zhang Q C, Orendác M, Prokleška J, Ren Y P, Long L S, Zheng Z P, Zheng L S. Beauty, Symmetry, and Magnetocaloric Effect-Four-Shell Keplerates with 104 Lanthanide Atoms. J. Am. Chem. Soc., 2014,136:17938-17941
- [18]Chen Y C, Prokleška J, Xu W J, Liu J L, Liu J, Zhang W X, Jia J H, Sechovský V, Tong M L. A Brilliant Cryogenic Magnetic Coolant: Magnetic and Magnetocaloric Study of Ferromagnetically Coupled GdF<sub>3</sub>. J. Mater. Chem. C, **2015**,3:12206-12211
- [19]Zheng Y Z, Zhou G J, Zheng Z P, Winpenny R E P. Molecule-Based Magnetic Coolers. Chem. Soc. Rev., 2014,43:1462-1475
- [20]Wu J F, Li X L, Zhao L, Guo M, Tan J K. Enhancement of Magnetocaloric Effect through Fixation of Carbon Dioxide: Molecular Assembly from Ln<sub>4</sub> to Ln<sub>4</sub> Cluster Pairs. *Inorg. Chem.*, 2017,56:4104-4111
- [21]Xu C Y, Qiao X Y, Tan Y, Liu S S, Hou W Y, Cui Y Y, Wu W L, Hua Y P, Wang W M. Modulating Single-Molecule Magnet Behaviors of Dy<sub>4</sub><sup>III</sup> Clusters through Utilizing Two Different β-Diketonate Coligands. *Polyhedron*, **2019,160**:272-278
- [22]Li X L, Li H, Chen D M, Wang C, Wu J F, Tang J K, Shi W, Cheng P. Planar Dy<sub>3</sub> + Dy<sub>3</sub> Clusters: Design, Structure and Axial Ligand Perturbed Magnetic Dynamics. *Dalton Trans.*, 2015,44:20316-20320
- [23]Wang W M, Li X Z, Zhang L, Chen J L, Wang J H, Wu Z L, Cui J Z. A Series of [2×2]Square Grid Ln<sup>III</sup><sub>4</sub> Clusters: A Large Magnetocaloric Effect and Single-Molecule-Magnet Behavior. New J. Chem., 2019, 43:7419-7426
- [24]Zhang L, Zhang P, Zhao L, Wu J F, Guo M, Tang J K. Anions Influence the Relaxation Dynamics of Mono-µ<sub>3</sub>-OH-Capped Triangular Dysprosium Aggregates. *Inorg. Chem.*, 2015,54:5571-5578

[25]Katagiri S, Tsukahara Y, Hasegawa Y, Wada Y J. Energy-Transfer Mechanism in Photoluminescent Terbium (III) Complexes Causing Their Temperature - Dependence. Bull. Chem. Soc. Jpn., 2007, 80: 1492-1503

报

- [26]Boudreaux E A, Mulay L N. Theory and Applications of Molecular Paramagnetism. New York: Wiley-Interscience, 1976.
- [27]Sheldrick G M. SHELX-97, Program for the Solution and the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
- [28]Zabrodsky H, Peleg S, Avnir D. Continuous Symmetry Measures. 2. Symmetry Groups and the Tetrahedron. J. Am. Chem. Soc., 1993,115: 8278-8289
- [29]Wang W M, Ren Y H, Wang S, Zhan C F, Wu Z L, Zhang H, Fang M. Lanthanide Dinuclear Complexes Constructed by 8-Hydroxyquinoline Schiff Base Showing Magnetic Refrigeration and Slow Magnetic Relaxation. *Inorg. Chim. Acta*, 2016,453:452-456
- [30]Wang W M, Liu S Y, Xu M, Bai L, Wang H Q, Wen X, Zhao X Y, Qiao H, Wu Z L. Structures and Magnetic Properties of Phenoxo-O-Bridged Dinuclear Lanthanide(III) Compounds: Single-Molecule Magnet Behavior and Magnetic Refrigeration. Polyhedron, 2018,145:114-119
- [31]Wang W M, Zhang H X, Wang S Y, Shen H Y, Gao H L, Cui J Z, Zhao B. Ligand Field Affected Single-Molecule Magnet Behavior of Lanthanide (III) Dinuclear Complexes with an 8 - Hydroxyquinoline Schiff Base Derivative as Bridging Ligand. *Inorg. Chem.*, 2015, 54: 10610-10622
- [32]Zhang S W, Shi W, Li L L, Duan E Y, Cheng P. Lanthanide Coordination Polymers with "fsy-type" Topology Based on 4,4'-Azobenzoic Acid: Syntheses, Crystal Structures, and Magnetic Properties. Inorg. Chem., 2014,53:10340-10346
- [33]Guan X F, Shen J X, Hu X Y, Yang Y, Han X, Zhao J Q, Wang J, Shi Y, Wang W M. Synthesis, Structures and Magnetic Refrigeration Properties of Four Dinuclear Gadolinium Compounds. *Polyhedron*, 2019,166:17-22
- [34]Wang S Y, Wang W M, Zhang H X, Shen H Y, Jiang L, Cui J Z, Gao H L. Seven Phenoxido - Bridged Complexes Encapsulated by 8 -Hydroxyquinoline Schiff Base Derivatives and β-Diketone Ligands: Single-Molecule Magnet, Magnetic Refrigeration and Luminescence Properties. Dalton Trans., 2016,45:3362-337
- [35]Wang W M, He L Y, Wang X X, Shi Y, Wu Z L, Cui J Z. Linear-Shaped Ln<sup>III</sup><sub>4</sub> and Ln<sup>III</sup><sub>6</sub> Clusters Constructed by a Polydentate Schiff Base Ligand and a β-Diketone Co-ligand: Structures, Fluorescence Properties, Magnetic Refrigeration and Single-Molecule Magnet Behavior. Dalton Trans., 2019,48:16744-16755
- [36]Wang K, Chen Z L, Zou H H, Zhang S H, Li Y, Zhang X Q, Sun W Y, Liang F P. Diacylhydrazone-Assembled {Ln<sub>11</sub>} Nanoclusters Featuring a "Double - Boats Conformation" Topology: Synthesis, Structures and Magnetism. *Dalton Trans.*, 2018,47:2337-2343
- [37]Wang K, Chen Z L, Zou H H, Hu K, Li H Y, Zhang Z, Sun W Y, Liang F P. A Single-Stranded {Gd<sub>18</sub>} Nanowheel with a Symmetric Polydentate Diacylhydrazone Ligand. *Chem. Commun.*, **2016**, **52**: 8297-8300

- [38]Luo Z R, Zou H H, Chen Z L, Li B, Wang K, Liang F P. Triethylamine-Templated Nanocalix Ln<sub>12</sub> Clusters of Diacylhydrazone: Crystal Structures and Magnetic Properties. *Dalton Trans.*, 2019,48:17414-17421
- [39]Chang L X, Xiong G, Wang L, Cheng P, Zhao B. A 24-Gd Nanocapsule with a Large Magnetocaloric Effect. *Chem. Commun.*, 2013,49: 1055-1057
- [40]Wang W M, Duan W W, Yue L C, Wang Y L, Ji W Y, Zhang C F, Fang M, Wu Z L. Magnetic Refrigeration and Single-Molecule Magnet Behaviour of Two Lanthanide Dinuclear Complexes (Ln=Gd<sup>III</sup>, Tb<sup>III</sup>) Based on 8-Hydroxyquinolin Derivatives. *Inorg. Chim. Acta*, 2017,466:145-150
- [41]Chu X Y, Zhang H X, Chang Y X, Nie Y Y, Cui J Z, Gao H L. A Series of Ln<sub>2</sub> Complexes Based on an 8-Hydroxyquinoline Derivative: Slow Magnetization Relaxation and Photo-Luminescence Properties. New J. Chem., 2018,42:5688-5697
- [42]Wang W M, Liu H H, He L T, Han X R, Wu Z L, Ran Y G, Zou J Y, Fang M. Structures, Luminescence Properties, Magnetocaloric Effect and Slow Magnetic Relaxation of Three Ln(III) Complexes Based on 8-Hydroxyquinoline Schiff-Base Ligand. *Polyhedron*, 2017, 133: 119-124
- [43]Wu D F, Liu Z, Ren P, Liu X H, Wang N, Cui J Z, Gao H L. A New Family of Dinuclear Lanthanide Complexes Constructed from an 8-Hydroxyquinoline Schiff Base and β-Diketone: Magnetic Properties and Near-Infrared Luminescence. *Dalton Trans.*, 2019,48:1392-1403

- [44]Wang W M, Guan X F, Liu X D, Fang M, Zhang C F, Fang M, Wu Z L. Two Gd<sub>2</sub> Compounds Constructed by 8-Hydroxyquinoline Schiff Base Ligands: Synthesis, Structure, and Magnetic Refrigeration. *Inorg. Chem. Commun.* 2017,79:8-11
- [45]Xia Q Y, Feng M Y, Ma D X, Shi S M, Xie Y C, Tian W, Shi H J, Wang Q L, Wang W M. Structures, Luminescent Properties and Magnetic Refrigeration of Two Series of Ln<sup>III</sup><sub>2</sub> Compounds. *Polyhedron*, 2019,166:141-145
- [46]Wang W M, Wang Q, Bai L, Qiao H, Zhao X Y, Xu M, Liu S Y, Shi Y, Fang M, Wu Z L. Lanthanide Directed Fabrication of Three Phenoxo-O Bridged Dinuclear Compounds Showing Magnetic Refrigeration and Single Molecule Magnet Behavior. *Polyhedron*, **2018**, **142**:43-48
- [47]Shi Q H, Xue C L, Fan C J, Yan L L, Qiao N, Fang M, Wang S F. Magnetic Refrigeration Property and Slow Magnetic Relaxation Behavior of Five Dinuclear Ln (III) - Based Compounds. *Polyhedron*, 2021,194:114938-114944
- [48]Chang Y X, Hou F, Feng M Y, Zhang H H, Kang T T, Wang W M, Fang M. Two Dinuclear Lanthanide(III) Compounds Based on a Multidentate Ligand: Structures, Magnetic Refrigeration and Slow Magnetic Relaxation. *Inorg. Chim. Acta*, 2019,486:83-87
- [49]Evangelisti M, Roubeau O, Palacios E, Camon A, Hooper T N, Brechin E K, Alonso J J. Cryogenic Magnetocaloric Effect in a Ferromagnetic Molecular Dimer. Angew. Chem. Int. Ed., 2011, 50: 6606-6609