纳米晶态硼化钴的合成及其催化氨硼烷高效制氢

金智康¹ 韦 童¹ 许 超² 贾洪柏² 宋俊杰¹ 祝宏亮¹ 杜向博文¹ 彭正鑫¹ 王 刚¹ 刘 军² 丁宏云² 何 凡² 王 敏² 李仁宏^{*,1} (¹浙江理工大学材料科学与工程学院,杭州 310018) (²安吉国千环境科技有限公司,湖州 313300)

摘要:采用简单的煅烧工艺合成了纳米硼化钴(CoB)晶体,并首次研究了纳米CoB晶体在氨硼烷溶液水解制氢过程中的催化活性。研究发现,纳米CoB晶体具有较高的催化活性,在室温条件下其转换频率(TOF)为35.3 mol_{H2}·mol_{eat}⁻¹·min⁻¹,优于同等条件下贵金属Pt催化剂(TOF=29.3 mol_{H2}·mol_{eat}⁻¹·min⁻¹)。此外,循环测试8次后纳米硼化物晶体的催化制氢性能没有发生衰减。进一步研究发现CoB表面的Co⁰物种是催化制氢的活性位点,而表面的B物种位点能够有效辅助Co⁰位点实现协同催化氨硼烷制氢。

关键词: 硼化钴; 氨硼烷; 催化制氢; 协同作用
中图分类号: 0614.81 文献标识码: A 文章编号: 1001-4861(2022)12-2392-09
DOI: 10.11862/CJIC.2022.242

Synthesis of Nanocrystalline Cobalt Boride for Efficient Catalytic Hydrogen Production via Ammonia Borane Hydrolysis

JIN Zhi-Kang¹ WEI Tong¹ XU Chao² JIA Hong-Bo² SONG Jun-Jie¹ ZHU Hong-Liang¹ DU Xiang-Bo-Wen¹ PENG Zheng-Xin¹ WANG Gang¹ LIU Jun² DING Hong-Yun² HE Fan² WANG Min² LI Ren-Hong^{*,1} (¹School of Materials Science & Engineering, Zhejiang SCI-TECH University, Hangzhou 310018, China) (²Anji Goachnieve Enviro Technology Co., Ltd., Huzhou, Zhejiang 313300, China)

Abstract: In this paper, a simple calcination process was used to synthesize nanocrystalline cobalt boride (CoB), which was employed to catalyze the hydrolysis of ammonia borane solution at room temperature. Specifically, it was found that the CoB exhibited high performance with a turnover frequency (TOF) of 35.3 mol_{H₂}·mol_{cat}⁻¹·min⁻¹, which is superior to platinum (TOF=29.3 mol_{H₂}·mol_{cat}⁻¹·min⁻¹). It still possessed excellent catalytic hydrogen production performance after repeated testing for 8 times. We found that Co⁰ species on the surface of CoB is a possible catalytic active site, and the boron site on the surface can effectively assist the Co⁰ site to achieve the synergistic catalytic hydrogen production from ammonia borane.

Keywords: CoB; ammonia borane; catalytic hydrogen production; synergistic effect

收稿日期:2022-05-23。收修改稿日期:2022-10-11。

国家自然科学基金(No.22172143,21872123,52102316)资助。

*通信联系人。E-mail:lirenhong@zstu.edu.cn

第12期

0 引 言

氢能是一种清洁可持续、无污染、热值高、分布 广泛的新能源,有望替代传统的化石燃料。但是, 目前氢能主要来源于化石能源,在生产过程中依然 会产生碳排放,对环境造成污染。同时,在运输和 储存氢气的过程中也存在严重的安全问题。氨硼 烷是一种可以快速释放大量氢气并且不含碳的储 氢材料,其理论含氢量高达19.6%。采用先进催化 技术从氨硼烷溶液中获得高纯氢有望提供一种氢 气制、储、运、用一体化新模式,实现"按需在线制氢 和用氢",巧妙解决氢气储运成本高、用氢安全方面 等问题。然而,氨硼烷水溶液在常温下化学性质稳 定,不易发生水解反应。举例而言,1 mol·L⁻¹的氨硼 烷在 25 ℃惰性气体中可以稳定保存 80 d^[1]。因此, 亟需开发新型催化剂加速氨硼烷在室温下的水解 制氢反应。

目前,研究人员主要利用铂²¹、钌¹³¹、钯、铑⁴⁴等贵 金属作为氨硼烷水解的高效催化剂,但同时人们也 发现钴、镍等非贵金属粒子对氨硼烷水解也具有良 好的催化活性^[5]。Kang等^[6]使用模板法制备了无定 形 Co-Ni-B 非晶多孔球,其中 Ni100 Co745 B155 性能最 佳,催化氨硼烷的转换频率(TOF)为6.5 min⁻¹。Yang 等四将无定形 CuCo 合金纳米粒子负载在氮化硼纳 米纤维上,得益于Cu与Co之间的协同作用, Cuo₄Coo₆/BNNF的催化氨硼烷水解产氢速率高达 3 387.1 mL·min⁻¹·g⁻¹。然而,无定形金属和负载型 催化剂在多次循环后会发生形貌坍塌或金属活性 位点脱落的现象,导致催化性能急剧下降。相比于 无定形催化剂,晶态的过渡金属硼化物由于其表面 存在稳定的电子结构、耐酸耐碱的化学性质以及类 贵金属的催化性能,在催化氨硼烷水解产氢方面有 着广泛的应用前景,但苛刻的制备条件极大地限制 了其实际应用。

我们采用一步锡热法制备了硼化钴(CoB)等过 渡金属硼化物,并测试其催化氨硼烷室温水解性 能。其在室温条件下的TOF值为35.3 mol_{H2}·mol_{cat}⁻¹· min⁻¹,优于同等条件下贵金属Pt催化剂(TOF=29.3 mol_{H2}·mol_{cat}⁻¹·min⁻¹),重复循环测试8次后依然保持 稳定的催化性能。利用X射线衍射(XRD)、X射线光 电子能谱(XPS)、透射电子显微镜(TEM)、电子顺磁共 振(EPR)等测试手段研究了催化剂的形貌结构并进 一步对催化机理进行了探索。研究发现CoB表面被 氨硼烷还原的 Co⁰是催化制氢反应的活性位点^[8],而 以 B₂O₃和 B⁰形式存在的表面 B 物种能够有效辅助 Co⁰位点催化氨硼烷产氢^[9]。

1 实验部分

1.1 实验原料

氨硼烷、二氯化钴、二氯化镍、三氯化铁、五氯 化钼、三氯化铬、五氯化钒、二氯化锰、二氧化钛、二 氧化锆、硼化钨、无定形硼粉、锡粉、氯化钠、氯化 钾,均购自阿拉丁试剂有限公司,纯度为分析纯。 溶剂为去离子水。

1.2 催化剂制备

采用锡热法制备 CoB 催化剂。称取 1 mmol CoCl₂、1.5 mmol Sn、6 mmol 无定形硼粉。其中 CoCl₂ 作为钴源,无定形硼粉作为硼源和还原剂,Sn 作为助还原剂以及反应溶剂。三者充分研磨,将研磨后的样品放入管式炉内煅烧,氢氩气(5% H₂)氛围,升温速率为5℃・min⁻¹,800℃保温8h。随后用1 mol·L⁻¹ HCl溶液洗涤多余的 Sn 以及 B₂O₃,再使用去离子水多次清洗,直至洗涤液 pH=7,将所得固体烘干研磨备用,即为纳米 CoB 晶体。使用相同的方法制备了 NiB和FeB。

采用高温熔盐法制备 CrB₂、MoB₂、VB₂、MnB₄。 称取物质的量之比为1:8的过渡金属氯化物(1 mmol)和硼氢化钠(8 mmol),加入0.5 g熔盐(NaCl、KCl 物质的量之比1:1),将三者充分研磨,将研磨后的样 品放入管式炉内煅烧,氢氩气(5% H₂)氛围,升温速 率为5℃・min⁻¹,800℃保温8h。随后用去离子水将 多余的熔盐洗去。将所得固体烘干备用。

同样采用高温熔盐法制备TiB₂、ZrB₂。称取并 混合物质的量之比为1:5的过渡金属氧化物(1 mmol)和硼粉(5 mmol),加入0.5 g熔盐,将三者充分 研磨,将研磨后的样品放入管式炉内煅烧,氮气氛 围,升温速率为5℃·min⁻¹,1000℃保温2h,制备得 到TiB₂、ZrB₂。文中若无特别指出,则除TiB₂、ZrB₂合 成温度为1000℃以外,其余硼化物合成温度均为 800℃。

1.3 材料表征

XRD图采用Bruker D8型X射线衍射仪测试,辐 射源为Cu Kα,波长为0.154 nm,工作电压30 kV,工 作电流30 mA,扫描范围为15°~80°,扫描速度为5 (°)·min⁻¹。TEM图采用FEI Tecnai G2 F20型透射电 子显微镜,点分辨率0.23 nm,线分辨率0.14 nm,最 大加速电压 200 kV。SEM 图采用蔡司 Sigma 300 型 扫描电子显微镜测试,能谱仪型号为 Smart EDX,分 辨率 1.0 nm,最大加速电压 30 kV。XPS 谱图采用 Thermo Scientific K-Alpha+型 X 射线光电子能谱仪 测试,X 射线源为单色化 Al Kα源(1 486.6 eV),其结 合能参考表面无定型碳 C1s 在 284.8 eV 处的峰,以 修正电荷效应引起的位移。采用 Bruker EPR A-300 电子顺磁共振光谱仪检测氨硼烷溶液水解反应过 程中产生的自由基。以 5,5-二甲基-1-吡咯啉-N-氧 化物(DMPO)作自由基捕获剂,测试参数:中心场设 置为 3 507 G,扫描宽度为 100 G,微波桥微波频率为 9.86 GHz,功率为 20 mW,信号通道调制频率为 100 kHz,转换时间为 20 ms,测试温度为室温 25 ℃。

1.4 催化性能测试

催化水解氨硼烷溶液制氢的反应容器是55 mL 的石英管。称量并加入5.0 mg催化剂粉末,随后加 入5 mL反应溶液,使用硅胶密封塞密封以确保反应 容器的气密性,将石英管置于25℃恒温水浴搅拌器 内反应。为确保测试精确性,使用10 mmol·L⁻¹的低 浓度氨硼烷溶液进行测试,每隔1 min使用气体微 量进样器抽取400 μL气体,并使用GC-TCD气相色 谱仪检测H₂的含量。

报

循环测试:将首次反应后的液体进行离心,使 用强磁铁吸引固定CoB,同时去除离心上清液,固体 催化剂用去离子水洗涤后即可进行第2次实验,反 应条件与第1次相同,如此进行多次重复实验。

2 结果与讨论

2.1 材料表征和催化性能测试

通过 XRD 研究了不同温度合成的 CoB 的晶相 结构,结果如图 1a 所示,由图可知,800 ℃下制备的 CoB 的衍射峰都与单斜晶相的 CoB(PDF No.65-2596) 对应,未观察到杂质,说明合成了较为纯的 CoB 晶 体。其中,在41.15°处出现的峰为(111)主晶面,CoB 晶体空间群为 Pnma,通过计算得知晶胞参数 a= 0.525 4 nm, b=0.304 3 nm, c=0.395 6 nm。 通过 Scherrer 公式计算得知 CoB 的平均晶粒尺寸为 39.9 nm。并且伴随着合成温度的下降,CoB 的结晶性也 越来越差。SEM 图显示样品为片状 CoB 组成的网络 结构(图 1b)。线性扫描显示 CoB 表面仅存在 Co和 B 元素(图 1b 插图)。图 1c 和 1d 是 CoB 的 TEM 图及其 晶格解析图,晶格间距 0.199 和 0.219 nm 分别对应

图 1 (a) 400~800 ℃合成的 CoB 的 XRD 图; CoB 的(b) SEM 图(插图为 EDS 谱图)、(c) TEM 图、(d) (210)和(111)晶面间距及 (e) 选区电子衍射花样图

Fig.1 (a) XRD patterns of CoB synthesized at 400-800 °C; (b) SEM image (Inset: EDS spectrum), (c) TEM images, (d) (210) and (111) plane spacings, and (e) selective electron diffraction pattern of CoB

CoB的(111)和(210)晶面。从选区电子衍射图(图 1e) 中观察到分别属于(111)、(202)和(102)晶面的衍射 斑,这也证实了CoB纳米粒子的成功合成。

CoB与其他硼化物催化氨硼烷溶液水解制氢的 性能如图2所示,在各类硼化物中,CoB的性能优于 同样具备正交结构的NiB和FeB,其中CoB在5min 内的H₂、NH₃BH₃物质的量之比($n_{H_2}/n_{NH_3BH_3}$)为3,表明 氨硼烷已完全反应,而NiB在7min才到达反应终 点;TiB₂等具有二维结构的MB_x型硼化物即使在30 min仍然未到反应终点,说明其它MB_x对氨硼烷溶液 的催化活性较差。

对不同煅烧温度合成的 CoB 进行催化性能测试 发现,随着合成温度的下降,CoB 的结晶度下降,催 化活性却有所提升。这是因为无定形的 CoB 表面能 够暴露出更多的活性位点 Co⁰。催化剂稳定性是重 要的性能评价指标之一,我们对不同的催化材料进 行了循环实验。图 3b 表明400 ℃下合成的 CoB 在循 环过程中存在明显的反应速率衰减问题,在经历8次循环后只保留了初始性能的74.0%。图3b~3e为

Inset: hydrogen production curves in 30 min

图 2 不同硼化物催化氨硼烷溶液的产氢曲线 Fig.2 Hydrogen production curves of ammonia borane

图 3 400~800 ℃合成的 CoB 的(a) 产氢曲线和(b~f) 产氢循环曲线

Fig.3 (a) Hydrogen production curves and (b-f) hydrogen production cyclic curves of CoB synthesized at 400-800 °C

500~700 ℃制备的 CoB 的循环曲线,其经过8次循环 后仍能在5 min 内到达反应终点,但是反应过程中 性能却在下降(如图 3c~3e 中黑线所示的反应速率 的变化趋势)。图 3f 为 800 ℃煅烧合成的 CoB,在8 次循环后仍具有良好的活性,并且在反应过程中也 未出现活性下降的情况。以上结果证明结晶程度 是影响催化剂稳定性的重要因素。后文中所用的 CoB 均为 800 ℃煅烧所得。

根据文献报道,碱性介质的引入可以加速氨硼 烷水解,从而加速产氢速率^[10]。通过调节溶液中 NaOH的浓度发现,随着碱浓度的增加,催化速率不 断提高。其稳定产氢时的斜率可以反映催化速率, 从不加 NaOH(红色曲线)的斜率(0.84)到引入 0.1 mol·L⁻¹ NaOH(黑色曲线)的斜率(0.84)到引入 0.1 mol·L⁻¹ NaOH(黑色曲线)的斜率(1.48)可知,催化速 率在引入 NaOH后提升 0.8 倍。同时观察到不加 NaOH的反应在 0~1 min 时出现了平台期,而引入 NaOH后平台逐渐消失。以上结果说明碱性介质的 引入不仅能够提高催化反应的速率,而且能使反应 提前发生,据此推测氢氧根离子(OH⁻)在反应中扮演 着重要的角色。当NH₃BH₃与 NaOH 的物质的量浓 度之比调节至1:3时(图中绿色曲线),反应在4 min 已达到终点,而继续升高该比例至1:10,反应终点 没有继续提前,这一结果表明当OH⁻的浓度高于NH₃BH₃的3倍时即为过量。

报

催化剂表面元素的电子状态对催化效果有着 重要的影响,通过 XPS 研究 CoB 催化剂表面的化学 性质。从 CoB 的 XPS 全谱图观察到催化剂表面由 Co、B、O 三种元素构成(图 5a)。图 5b 为催化反应前

Inset: corresponding histogram

图4 不同NaOH浓度下CoB催化氨硼烷溶液的产氢曲线

Fig.4 Hydrogen production curves of ammonia borane solution catalyzed by CoB at different concentrations of NaOH solution

图 5 CoB的 XPS 谱图: (a) 全谱图; 催化反应前后(b) Co2p 和(c) B1s 谱图

Fig.5 XPS spectra of CoB: (a) full spectrum; high-resolution (b) Co2p and (c) B1s spectra before and after catalytic reaction

后的 Co2p 谱图,观察到的 2 个自旋轨道峰分别对应 Co2p_{3/2}和 Co2p_{1/2}轨道并且伴随卫星峰,其中反应前 在 780.7 和 796.7 eV 处出现的峰对应 Co²⁺的特征峰。 相比之下,催化反应后 Co2p 谱图中 Co⁰的含量(红线 指出)有显著的增加,这是由于氨硼烷具有微弱的还 原性,将表面的 Co²⁺部分还原成了 Co⁰^[8]。Co⁰ 与 Ni⁰ 对氨硼烷水解有催化作用^[5],而其他零价过渡金属 对氨硼烷溶液鲜有催化作用。综上所述,推理出在 催化体系中产生的 Co⁰是催化氨硼烷水解反应的活 性位点。

2.2 催化机理探究

为了验证Co^o为活性位点这一推断,对CoB表面 进行了氧化和还原处理。首先将一部分CoB在还原 气氛下煅烧,还原CoB表面以生成Co^o。再将另外一 部分CoB在过氧化氢溶液中浸泡,消除表面存在的 Co^o。图6a表明表面被还原的CoB发生催化反应的 时间早于表面被氧化的CoB,这归因于经过氧化处 理的 CoB 在催化时需要首先经历 Co 的氧化态被还 原成为 Co^o的过程,而经过还原处理的 CoB 表面本身 就含有 Co^o位点。在反应中期二者的反应速率相 当,最终二者均能达到反应终点并产生氢气。这说 明 Co^o为活性位点。

为了进一步研究 CoB 的催化原理,探寻硼在催 化剂中扮演的角色,对不含硼的钴基材料进行氨硼 烷溶液催化测试。从图 6b 观察到氧化钴(Co³⁺)对氨 硼烷溶液没有催化活性,氧化亚钴(Co²⁺)催化活性略 优于 Co³⁺,而纳米钴粉是三者中催化活性最好的,这 说明催化活性主要来源是 Co⁰。当将纳米钴粉与硼 粉按物质的量之比1:1机械研磨后发现活性有较高 的提升,这主要归功于 B 的引入使 Co分散更好,减 少了 Co 的团聚现象,提高了催化剂与溶液的接触面 积,从而提高了催化活性。CoB 催化活性优于二者 的简单混合,说明除了分散 Co⁰,在 CoB 中的 B 还起 到其他重要作用。进一步分析 B1s XPS 谱图(图 5c)

- 图 6 (a) CoB 氧化与还原处理后的产氢曲线; (b) 不同含 Co物质催化氨硼烷产氢曲线; (c) CoB 催化氨硼烷溶液的 EPR 谱图; (d) 氨硼烷在 CoB 表面水解释氢示意图
- Fig.6 (a) Hydrogen production curve of CoB after oxidation or reduction treatment; (b) Hydrogen production curves of ammonia boranes catalyzed by different Co-containing substances; (c) EPR spectra of ammonia borane solution catalyzed by CoB;
 (d) Schematic diagram of water interpretation of hydrogen by ammonia borane on CoB surface

可知,192.6 eV 处对应 B³⁺的特征峰,归因于表面存 在 B₂O₃。188.4 eV 处对应 B⁰的特征峰,与 B 的标准 特征峰(187.2 eV)相比,B⁰的峰位置向高结合能方向 移动,即发生了 B 物种的电子向 Co 物种转移的现 象。因此,CoB 表面的 Co 位点附近会形成电子富 集,这不仅使得表面的 Co²⁺易被还原剂还原到 Co⁰, 同时使 Co 位点获得了捕捉硼烷基底物的能力。与 其他化合物相比较,B 为金属元素提供电子是硼化 物独具的特点^[9]。综上,B 与 Co 的协同作用体现在 电子从 B 物种向 Co 物种的传递,起到了活化表面 Co 物种的作用。

利用 EPR,使用 DMPO 作为自由基捕获剂,测试 了反应过程中产生的自由基,探寻反应过程。图 6c 中显示的9重峰为氢自由基(·H)的特征峰,并且随 着时间的增加·H信号在不断增强,表明反应过程中 不断有·H产生。已有实验证明氨硼烷水解的·H一 部分来源于水中的H,一部分来源于氨硼烷中与 B 相连的 H^{110]},二者发生归中反应形成H₂。由于反应 中并没有观测到羟基自由基的存在,结合前文碱性 介质的引入能增加反应速率以及 Co位点发生电子 富集的结论,可推测水并没有解离产生羟基自由基 而是在 Co 位点处得电子产生了氢氧根离子(H₂O+ $e^- \rightarrow \cdot H+OH^-$)。

报

综上所述,催化氨硼烷水解制氢的化学步骤如下:第1步,溶液中具有弱还原性的NH₃BH₃将CoB表面的Co²⁺部分还原成Co⁰;第2步,溶液中的NH₃BH₃和H₂O吸附于CoB表面的Co位点上;第3步,水被富电子的Co⁰活化,得电子发生H₂O+e⁻→OH⁻+·H反应,在无碱的条件下该基元反应为催化反应的决速步骤^[11]。同时Co⁰作为活性位点,打断键能较低的B—N键,形成硼活性中间体Co-BH₃,中间体被水活化的OH⁻进攻,生成BO₂⁻和·H,而Co原子与·H的结合能较弱,形成的·H迅速从Co表面脱落^[11],与水分解产生的·H结合形成H₂逸出^[12]。反应方程式如下:

$NH_3BH_3+3H_2O \xrightarrow{CoB} NH_4^++BO_2(H_2O)^-+3H_2$

催化剂的用量对催化速率的影响如图7a所示, 在25℃及10mmol氨硼烷溶液中,*n*_{H2}/*n*_{NH,BH3}=3为固 定值,表明可以完全析氢。在2.5~10mg催化剂的 用量范围内,用量越高析氢速率(*R*_{H2})越快,如图7b

图 7 (a) 不同质量 CoB 催化氨硼烷的产氢性能曲线; (b) ln *R*_{H₂} vs ln *m* 曲线; (c) CoB 在不同温度下产氢性能曲线; (d) CoB 催化氨硼烷溶液的 Arrhenius 曲线

所示。以析氢速率的对数与催化剂用量(m)的的对 数作图可得拟合曲线的斜率为0.98,说明氨硼烷水 解反应对于催化剂用量是一级反应。图7c表明随 着反应的发生氨硼烷溶液浓度逐渐下降,但是反应 速率没有明显下降,说明该反应对于氨硼烷浓度是 零级反应。在实际应用中可以通过改变催化剂的 量从而达到快速调整反应速率的目的。

基于产氢速率,进一步计算催化反应的TOF,公 式为TOF= $n_{\rm H_2}/(n_{\rm cat})$ 。其中 $n_{\rm H_2}$ 、 $n_{\rm cat}$ 表示在t时产生氢 气的物质的量以及CoB催化剂活性位点的物质的 量。反应温度为25 °C,氨硼烷初始浓度为0.01 mol· L⁻¹。图7a中计算得到2.5 mg催化剂(红色曲线)斜率 为0.302,5 mg催化剂(橙色曲线)斜率为0.598,催化 剂的用量与产氢速率均为2倍关系,说明在该实验 条件下催化剂用量在5 mg以内时活性位点完全被 利用,以此计算TOF较为准确。通过Co2p轨道的 XPS计算 Co⁰约占所有价态 Co的1.82%。以此为活性位点计算,在反应平稳的2~4 min下计算得到TOF=35.3 mol_{H2}·mol_{cat}⁻¹·min⁻¹。如表1所示,CoB的TOF数值高于其他非贵金属催化剂催化氨硼烷溶液产氢的数值,证明相较于同类型催化剂,CoB催化效率更高。在相同条件下贵金属Pt负载碳催化剂(含Pt量为10%)在30~90 s内产氢量为75.8 μmol,以此数据计算可得TOF=29.3 mol_{H2}·mol_{cat}⁻¹·min⁻¹。CoB的催化活性略优于贵金属催化剂,并且更加经济,分布更加广泛,是一种可以替代贵金属的催化剂。

活化能(E_a)是评价催化效果的重要指标。我们 研究了不同温度下氨硼烷溶液的析氢速率,如图 7c、7d所示,从Arrhenius斜率可知,CoB催化氨硼烷 溶液析氢的 E_a =23.00 kJ·mol⁻¹。相对较低的活化能 证明在室温下该反应容易发生。

表1 部分非贵金属催化剂催化氨硼烷性能比较

Table 1	Comparison of	of catalytic perfor	mance of some	e non-noble metal	catalysts for	ammonia borane
---------	---------------	---------------------	---------------	-------------------	---------------	----------------

Catalyst	$\text{TOF} / (\text{mol}_{\text{H}_2} \cdot \text{mol}_{\text{cat}}^{-1} \cdot \text{min}^{-1})$	$E_{\rm a}$ / (kJ·mol ⁻¹)	Reusability / %	Ref.
СоВ	35.3	23	100% (8 cycles)	This work
Co-W-B-P/Ni	—	29	$92\%\;(10\;{\rm cycles})$	[13]
Co-P hollow	23.5	38.7	$90\%~(7~{\rm cycles})$	[14]
Co-B hollow	23	47	$100\%~(7~{\rm cycles})$	[15]
CoNi/rGO	20	40	70% 5 (cycles)	[16]
Co/graphene	13.9	32.75	$100\%~(5~{\rm cycles})$	[17]
Co-Ni-B	6.5	38.62	$100\%~(4~{\rm cycles})$	[6]

2.3 CoB应用于其他硼烷基化合物

为研究 CoB 对于硼烷基化合物的水解是否具有 普遍的催化活性,对一系列硼化物对甲硼烷叔丁胺 配合物、二甲氨硼烷等含有硼烷的基团化合物进行 了测试。如图8所示,与催化氨硼烷的规律相同,对 于这2类含有硼烷基的化合物,CoB均表现出最佳 的催化效果,NiB次之,而其余硼化物则没有表现出 催化性能。因此催化反应式可以概括如下:

图8 不同硼化物对(a)甲硼烷-叔丁胺配合物溶液和(b)二甲胺硼烷溶液的催化析氢曲线

Fig.8 Hydrogen production curves of (a) methyl borane tert-butylamine and (b) dimethylamine borane catalyzed by different borides

 $R \longrightarrow BH_3 + 3H_2O \longrightarrow R \longrightarrow H^+ + BO_2(H_2O)^- + 3H_2 \uparrow$

3 结 论

通过锡热法合成了晶态的 CoB,并测试其在氨 硼烷溶液中催化水解制氢的性能。其中 CoB 在各类 金属硼化物中表现出最佳性能,其 TOF 高达 35.3 mol_{H2}·mol_{cat}⁻¹·min⁻¹,优于相同反应条件下的 Pt 催化 剂。研究发现 CoB 催化活性主要来源于 CoB 表面的 被还原的 Co⁰位点,而 B 位点同时起到 2 个作用: (1) 提供电子协助 Co²⁺被还原成 Co⁰形成活性位点; (2) 在 Co 附近形成的电子聚集使其可以有效地捕捉 溶液中的硼烷基团,从而促进反应的快速发生。基 于此机理深入研究发现,CoB 对于硼烷类化合物的 水解具有普遍催化活性。本工作为过渡金属硼化 物晶体在能源催化领域的应用提供了新的思路。

参考文献:

- [1]Qiang X, Chandra M. Catalytic Activities of Non-noble Metals for Hydrogen Generation from Aqueous Ammonia-Borane at Room Temperature. J. Power Sources, 2006,163(1):364-370
- [2]Zhou Q X, Xu C X. Stratified Nanoporous PtTi Alloys for Hydrolysis of Ammonia Borane. J. Colloid Interface Sci., 2017,496:235-242
- [3]Ozhava D, Ozkar S. Nanoceria Supported Rhodium(0) Nanoparticles as Catalyst for Hydrogen Generation from Methanolysis of Ammonia Borane. Appl. Catal. B-Environ., 2018,237:1012-1020
- [4]Tunç N, Rakap M. Preparation and Characterization of Ni-M (M: Ru, Rh, Pd) Nanoclusters as Efficient Catalysts for Hydrogen Evolution from Ammonia Borane Methanolysis. *Renewable Energy*, **2020**, **155**: 1222-1230
- [5]Alpaydın C Y, Gülbay S K, Colpan O C. A Review on the Catalysts Used for Hydrogen Production from Ammonia Borane. Int. J. Hydrog. Energy, 2020,45(5):3414-3434
- [6]Kang Y Q, Jiang B, Yang J J, Wan Z, Jongbeom N, Li Q, Li H X, Joel H, Yoshio S, Yusuke Y, Toru A. Amorphous Alloy Architectures in Pore Walls: Mesoporous Amorphous NiCoB Alloy Spheres with Controlled Compositions via a Chemical Reduction. ACS Nano, 2020,14 (12):17224-17232
- [7]Yang X, Li Q L, Li L L, Yang X J, Yu C, Liu Z Y, Fang Y, Huang Y,

Tang C C. CuCo Binary Metal Nanoparticles Supported on Boron Nitride Nanofibers as Highly Efficient Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane. *J. Power Sources*, **2019,431** (15):135-143

- [8]Lu D S, Li J H, Lin C H, Liao J Y, Feng Y F, Ding Z T, Li Z W, Liu Q B, Li H. A Simple and Scalable Route to Synthesize Co_xCu_{1-x}Co₂O₄@ Co_yCu_{1-y}Co₂O₄ Yolk-Shell Microspheres, a High-Performance Catalyst to Hydrolyze Ammonia Borane for Hydrogen Production. *Small*, **2019**, **15**(10):1805460
- [9]Saad A, Gao Y, Owusu K A, Liu W, Wu Y, Ramiere A, Guo H, Tsiakaras P, Cai X. Ternary Mo₂NiB₂ as a Superior Bifunctional Electrocatalyst for Overall Water Splitting. *Small*, **2022**,**18**(6):2104303
- [10]Fu Z C, Xu Y, Chan L F, Sharon L, Wang W W, Li F, Liang F, Chen Y, Lin Z S, Fu W F, Che C M. Highly Efficient Hydrolysis of Ammonia Borane by Anion (OH⁻, F⁻, Cl⁻) - Tuned Interactions between Reactant Molecules and CoP Nanoparticles. *Chem. Commun.*, 2017, 53(4):705-708
- [11]Wang C, Tuninetti J, Wang Z, Zhang C, Roberto C, Lionel S, Sergio M, Jaime R, Didier A. Hydrolysis of Ammonia-Borane over Ni/ZIF-8 Nano Catalyst: High Efficiency, Mechanism, and Controlled Hydrogen Release. J. Am. Chem. Soc., 2017,139(33):11610-11615
- [12]Chandra M, Qiang X. Dissociation and Hydrolysis of Ammonia -Borane with Solid Acids and Carbon Dioxide: An Efficient Hydrogen Generation System. J. Power Sources, 2006,159(2):855-860
- [13]Yang J, Cheng F Y, Jing L, Chen J. Hydrogen Generation by Hydrolysis of Ammonia Borane with a Nanoporous Cobalt-Tungsten-Boron-Phosphorus Catalyst Supported on Ni Foam. *Int. J. Hydrog. Energy*, 2011,36(2):1411-1417
- [14]Li P, Huang Y Q, Huang Q H, Chen R, Li J X, Tian S H. Cobalt Phosphide with Porous Multishelled Hollow Structure Design Realizing Promoted Ammonia Borane Dehydrogenation: Elucidating Roles of Architectural and Electronic Effect. *Appl. Catal. B-Environ.*, 2022, 313:12144-12155
- [15]Tong D G, Zeng X L, Chu W, Wang D, Wu P. Magnetically Recyclable Hollow Co-B Nanospindles as Catalysts for Hydrogen Generation from Ammonia Borane. J. Mater. Sci., 2010,45(11):2862-2867
- [16]Yang Y, Zhang F, Wang H, Yao Q L, Chen X S, Lu Z H. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation. J. Nanomater., 2014:1-9
- [17]Lan Y, Nan C, Cheng D, Dai H M, Hu K, Luo W, Cheng G Z. Graphene Supported Cobalt(0) Nanoparticles for Hydrolysis of Ammonia Borane. *Mater. Lett.*, 2014,115(15):113-116