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一种用于检测罗红霉素和B4O7
2-的高稳定性Cd􀃭配位聚合物
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摘要：在溶剂热条件下，成功合成了一种稳定的配位聚合物[Cd2(L)(bpb)(H2O)4]·0.5H4L (1)(H4L=1，1'⁃乙烷基联苯⁃3，3'，5，5'⁃四
羧酸，bpb=1，4⁃二(4⁃吡啶基)苯)。1在不同的有机溶剂和水中表现出优异的稳定性。1可通过荧光猝灭检测水中的罗红霉素

(ROX)和B4O72-，检测限分别为 0.21和 1.59 µmol·L-1。1可成功用于延河水中ROX和B4O72-的测定。此外，分析讨论了其传感

机理。
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Abstract: A stable coordination polymer, [Cd2(L) (bpb) (H2O)4] ·0.5H4L (1) (H4L=1, 1' ⁃ ethylbiphenyl ⁃ 3, 3' , 5, 5' ⁃
tetracarboxylic acid, bpb=1,4⁃di(pyridin⁃4⁃yl) benzene), were successfully constructed under solvothermal condi⁃
tions. 1 exhibited excellent stability in different organic solvents and water. 1 could detect roxithromycin (ROX) and
B4O72- in water by fluorescence quenching, and the detection limits were 0.21 and 1.59 µmol·L-1, respectively. 1
could be successfully used for the determination of ROX and B4O72- in Yanhe River water. Moreover, the possible
sensing mechanisms are also discussed in detail. CCDC: 2162322.
Keywords: roxithromycin; B4O72-; fluorescence sensor; coordination polymer

0 Introduction

Roxithromycin (ROX) is a semi⁃synthetic antibiot⁃
ic containing 14 ⁃membered macrolides, which can be
used to treat inflammatory diseases caused by a variety
of pathogen infections, and its antibacterial effect in
the body is stronger than that of erythromycin[1]. ROX
has the advantages of rapid absorption, elimination of

long half ⁃ life, and a good therapeutic effect on fungi,
such as Streptococcus and Corynebacterium. However,
the abuse or irregular use of macrolide antibiotics may
cause gastrointestinal discomfort, allergic reactions,
liver and kidney damage, and other diseases[2]. There⁃
fore, it is very urgent and important to find an efficient
detection method for ROX. Boron is an essential ele⁃
ment in the human body and is indispensable in many
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parts of the body, especially bones. Boron is generally
present in the human body in the form of boric acid.
However, boron is a limited element, and the content in
the body should not be too much. Studies have shown
that abnormal boric acid content can cause adverse
reactions such as anorexia, vomiting, and diarrhea[3].
Even ingesting small amounts of boron can cause poi⁃
soning due to slow excretion. Borax (Na2B4O7·10H2O)
is also a form of boron and is a very important chemical
raw material that is widely used in industry and con⁃
sumer products. Because it exists in food and some con⁃
sumer products, long⁃term consumption or use of such
products will lead to the accumulation of borax in the
body, which is harmful to various organs of the human
body[4]. Therefore, the detection of borate content is
very important.

Coordination polymers (CPs) are organic⁃inorganic
hybrid materials composed of inorganic metal centers
and organic ligands[5⁃6]. Due to the diversity of metal
and organic ligands, or the introduction of two or more
metal and organic ligands at the same time, the struc⁃
ture of CPs is more diverse[7⁃9]. CPs have attracted the
attention of more and more researchers due to their
structural diversity, high porosity, tunable functions,
and large specific surface area[10⁃15]. CPs are widely
used in gas storage, bioimaging, adsorption, drug deliv⁃
ery, and sensing due to their excellent chemical proper⁃
ties[16⁃18]. In particular, fluorescent materials based on
CPs are more favored by researchers due to their high
selectivity, low detection limit, high sensitivity, good
recovery performance, and short response time[19⁃20]. For
instance, Zhang et al. synthesized a Zn􀃭 ⁃ based CP
with high selectivity and sensitivity for Ni2+ and
PO43- [21]. A complex that can detect oridazole antibiot⁃
ics and nitrophenol with low detection limits was
reported by Li et al[22].

In this work, we constructed a Cd􀃭 CP, [Cd2(L)
(bpb)(H2O)4]·0.5H4L (1) (H4L=1,1'⁃ethylbiphenyl⁃3,3',
5, 5' ⁃ tetracarboxylic acid, bpb=1, 4 ⁃ di(pyridin ⁃ 4 ⁃ yl)
benzene). 1 exhibited excellent stability in different
organic solvents and water and high selectivity and sen⁃
sitivity to ROX and B4O72- . Furthermore, 1 was a reus⁃
able material with good recyclability. The possible

mechanism of fluorescence quenching is also dis⁃
cussed in detail in the article. Finally, the detection of
ROX and B4O72- in Yanhe River water indicated the
actual availability of complex 1. To our knowledge, this
is the first complex that can detect ROX. This is of
great significance for the new fluorescent probe in
future research.
1 Experimental

1.1 Materials and instrumentation
The chemicals used were all commercially avail⁃

able and could be used without further purification.
Powder X⁃ray diffraction (PXRD) patterns were record⁃
ed with a Bruker D8ADVANCE diffractometer operat⁃
ing at 40 kV and 40 mA using Cu Kα radiation (λ =
0.154 18 nm) at a scanning rate of 8 (°)·min-1 from 5°
to 50°. Fluorescence experiments were carried out on a
Hitachi F⁃7100 Fluorescence Spectrophotometer. Ther⁃
mogravimetric analysis (TGA) was performed on a
NETZSCH STA 449F5 thermal analyzer.
1.2 Synthesis of 1

A solid mixture of Cd(NO3)2·4H2O (0.1 mmol,
0.030 8 g), H4L (0.05 mmol, 0.017 9 g), and bpb (0.05
mmol, 0.011 6 g) was dissolved in the mixed solvent of
DMF (3 mL), H2O (3 mL), and HNO3 (0.1 mL, 6 mol·
L-1). The mixed solution was placed in a 10 mL inner
glass bottle and reacted at 95 ℃ for three days.
Finally, colorless crystals were obtained. Yield: 57%
(based on Cd). Anal. Calcd. for C43H37Cd2N2O16(% ): C,
48.60; H, 3.52; N, 2.64. Found(%): C, 48.32; H, 3.62;
N, 2.87.
1.3 Crystal structure determination

Single crystal data of 1 were collected on a Bruker
SMART APEX⁃Ⅱ diffractometer (Mo Kα radiation and
λ =0.071 073 nm). The crystal structures were solved
using direct methods and then refined by the full ⁃
matrix least⁃squares techniques on F 2 using
SHELXL[23⁃24]. All non ⁃ hydrogen atoms were refined
anisotropically. Hydrogen atoms were obtained by geo⁃
metric calculation. All calculations were performed
using the SHELXTL program. Partial data for crystals
are given in Table S1 and S2 (Supporting information).

CCDC: 2162322.
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2 Results and discussion

2.1 Crystal structure
Complex 1 crystallizes in the triclinic P1 space

group. The asymmetric unit of 1 includes two Cd2+ ions,
one and a half L4- anions, one bpb molecule, four coor⁃
dinated H2O molecules, and a half free H4L molecule.
Every Cd2+ ion is seven ⁃ coordinated by four O atoms
(O1, O2, O3A, O4A) from two L4- anions, two oxygen

atoms (O5, O6) from two coordinated water molecules,
and one N atom (N1) from one bpb molecule (Fig.1a).
In complex 1, the H4L ligand is completely deprotonat⁃
ed and the coordination mode is μ4 ⁃ η2∶η2∶η2∶η2

(Fig.1a). Adjacent Cd􀃭 ions are connected by O atoms
in L4- to form a 1D chain structure (Fig. 1b). Then 1D
chains are linked by bpb ligands to form 2D framework
(Fig.1c).

Symmetry codes: A: x, 1+y, z; B: 1-x, 1-y, -z
Fig.1 (a) Ellipsoid diagram of molecular structure with 50% ellipsoid probability; (b) 1D chain structure; (c) 2D framework

2.2 Purity and stability of 1
TGA was performed to explore the stability of 1.

The weight loss of 1 was 8.52% below 100 ℃ (Fig.S1),
which can be regarded as the loss of coordinated water
molecules (Calcd. 6.78%) and release of lattice H2O.
The second weight loss in 350⁃450 ℃ should be due to
the loss of free carboxylic acid ligands in the pores. In

the 450⁃800 ℃ range, the skeleton collapsed and disin⁃
tegrated. The residual (36.79%) after 800 ℃ is attribut⁃
ed to CdO (Calcd. 36.25%). The PXRD pattern of 1
was almost identical to the simulated, implying the
pure phase of 1 (Fig.S2). The skeleton was unchanged
when 1 was immersed in acidic and basic aqueous solu⁃
tions (pH=2.0 and 12.6) for 24 h, indicating that 1 had
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good acid and alkali resistance (Fig.S3). 1 could keep
the original skeleton in an organic solvent for seven
days and could be stable in boiling water for 30 days,
which further showed the chemical stability of 1 (Fig.
S4). Finally, the persistent luminescence ability of 1 in
deionized water was tested. As shown in Fig. S5, after
seven consecutive days, the fluorescence still main⁃
tained its original relative intensity, indicating its dura⁃
bility and application potential.
2.3 Photoluminescence property of 1

The photoluminescence of H4L and 1 in the solid
state was investigated (Fig. S6). H4L had an emission
peak at 400 nm (λex=310 nm), corresponding to a stron⁃
ger emission peak at 444 nm (λex=362 nm). The emis⁃
sion peak of 1 was stronger than that of the ligand,
which may be due to coordination interactions[25]. The

emission spectrum of 1 has a partial redshift, which
may be caused by the charge transfer between H4L and
Cd2+ [26].
2.4 Antibiotics sensing

Complex 1 is a very promising sensing material
due to its excellent water stability and luminescence
properties. Therefore, the luminescence sensing of 1
for different antibiotics was investigated, including pen⁃
icillin sodium (PEN), tetracycline (TET), ROX, metro⁃
nidazole (MDZ), azithromycin (AZM), chloramphenicol
(CAP), gentamicin sulfate (GEN), ornidazole (ODZ),
lincomycin hydrochloride (LIN), cefixime (CEF). As
shown in Fig.2a, the fluorescence of 1 was almost com⁃
pletely quenched when ROX was added. The other
antibiotics mixed into the suspension of 1 had a small
effect on the luminescence intensity of 1. Next, the

Fig.2 (a) Fluorescence intensities of different antibiotics added to the suspension of 1; (b) Luminescence intensity of 1 in the
presence of different antibiotics with the addition of ROX; (c) Emission spectra of 1 dispersed in the ROX solutions
with different concentrations; (d) Plot of I0/I-1 vs cROX for 1 in a concentration range of 0⁃450 µmol·L-1
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effect of adding ROX on the fluorescence intensity in
the presence of other antibiotics was tested. It can be
seen from Fig.2b that in the presence of other antibiot⁃
ics, the addition of ROX could still greatly quench the
fluorescence of 1, showing that it was an excellent
ROX sensor. Then, concentration gradient experiments
were carried out to study the quenching situation in
detail (Fig. 2c). When the concentration of ROX was
450 µmol·L-1, the fluorescence was almost quenched
by 97.0%. And the plot of I0/I⁃1 vs cROX exhibited a lin⁃
ear relationship over the entire concentration range
(Fig.2d). This phenomenon was rarely seen in previous⁃
ly reported articles. The detection limit (LOD) was 0.21
µmol·L-1 according to LOD=3σ/k[27⁃29], where σ is the
standard deviation of blank measurement; k is the
slope. Then, we investigated the change in fluores⁃

cence intensity over time with the addition of ROX.
When a 450 µmol·L-1 ROX solution was added, the
fluorescence intensity was almost completely
quenched, and the fluorescence hardly changed after
20 s (Fig.S7a). Finally, the cycling experiment was car⁃
ried out, and it was found that the fluorescence could
still recover to the original intensity after four cycles,
indicating that 1 was a very potential ROX sensor (Fig.
S7b). As far as we know, this should be the first com⁃
plex that can detect ROX. This is of great significance
for the new fluorescent probe in future research.
2.5 Inorganic anions sensing

The luminescence sensing of 1 for different inor⁃
ganic anions was investigated, including Cl-, S2-, ClO4-,
IO3- , I- , NO3- , ClO3- , MoO42- , CH3COO- , Cr2O42- , Br- ,
MnO4- , SO42- , B4O72- . As shown in Fig.3a, the fluores⁃

Fig.3 (a) Fluorescence intensities of different inorganic anions added to the suspension of 1; (b) Luminescence intensity of 1
with the addition of B4O72- in the presence of different inorganic anions; (c) Emission spectra of 1 upon the gradual
addition of B4O72-; (d) Plot of I0/I-1 vs cB4O2 -7 for 1 in a concentration range of 0⁃70 µmol·L-1
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cence of 1 was almost completely quenched when
B4O72- was added, while the other inorganic anions
mixed into the suspension of 1 had a small effect on the
luminescence intensity. Next, the effect of adding
B4O72- on the fluorescence intensity in the presence of
other inorganic anions was tested. It can be seen from
Fig. 3b that in the presence of other inorganic anions,
the addition of B4O72- could still greatly quench the flu⁃
orescence intensity of 1, showing that it was an excel⁃
lent B4O72- sensor. Then, concentration gradient experi⁃
ments were carried out in order to study the quenching
situation detailedly (Fig.3c). When the concentration of
B4O72- was 70 µmol·L-1, the fluorescence was almost
quenched by 97.2%. And the plot of I0/I-1 vs cB4O2 -7
exhibited a linear relationship in the low concentration
range (Fig.3d). The LOD was 1.59 µmol·L-1. Then, we
investigated the change in fluorescence intensity over
time with the addition of B4O72-. It was found that when
70 µmol·L-1 was added, the fluorescence intensity was
almost completely quenched, and the fluorescence
hardly changed after 20 s (Fig. S8a). Finally, the
cycling experiment was carried out, and it was found
that the fluorescence could still recover to the original
intensity after four cycles, indicating that 1 was a very
potential B4O72- sensor (Fig.S8b).
2.6 Possible sensing mechanism

To explore the possible mechanism of fluores⁃
cence quenching, the following experiments were car⁃
ried out. First, the samples after fluorescence sensing
were tested by XRD, and it was found that the peak
positions were almost consistent with the peak posi⁃
tions of the crystal simulation (Fig.S2), indicating that
the crystal structure was intact. Therefore, the collapse
of the crystal framework was not the cause of fluores⁃
cence quenching. The emission spectrum of 1 had little
overlap with the UV⁃Vis spectrum of ROX and B4O72-,
implying that the reason for fluorescence quenching
should not be caused by energy transfer (Fig. S9) [30].
Then, it is found that the LUMO level (-0.69 eV) of
ROX was higher than 1, indicating that the electron of
1 cannot be transferred to ROX basically (Fig.S9) [30⁃32].
Finally, the emission of 1 was almost invisible after the
addition of ROX, indicating that the internal filtering

effect plays an important role in the detection of ROX
and B4O72- by complex 1. This explains the process of
ROX and B4O72- quenching the fluorescence of
complex 1[30].
2.7 Detection of ROX and B4O7

2- in Yanhe River
water
We tested ROX and borate in Yanhe River water

to demonstrate the practical usability of the method. As
shown in Table 1 and 2, the estimated recoveries of
ROX and B4O72- at different concentrations were
obtained, ranging from 98.7% to 102% and 103% to
108%. The relative standard deviation (RSD) values
were 1.8%⁃2.3% and 1.4%⁃2.1% respectively, mean⁃
ing the reliability and practicality of 1 to detect ROX
and B4O72- in real samples.

3 Conclusions

In summary, a cadmium coordination polymer was
synthesized with high selectivity and sensitivity for the
detection of ROX and B4O72- . The sensing mechanism
is discussed in detail. Finally, it can also detect ROX
and B4O72- in real Yanhe River water samples through
standard recovery experiments. This experiment pro⁃
vides a promising fluorescent sensor for the detection
of ROX and B4O72- . To our knowledge, this sample is

*n=3.

Table 1 Recovery test of ROX spiked in Yanhe
River water samples

Spiked /
(µmol·L-1)

0
20
30
50

Detected /
(µmol·L-1)
Not detected

20.4
29.6
51.3

RSD* / %
—

1.8
1.7
2.3

Recovery / %
—

102
98.7
101

*n=3.
Table 2 Recovery test of B4O7

2- spiked in Yanhe
River water samples

Spiked /
(µmol·L-1)

0
5
20
30

Detected /
(µmol·L-1)
Not detected

5.4
20.9
30.8

RSD* / %
—

1.4
2.1
1.9

Recovery / %
—

108
104
103
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the first complex that can detect ROX.
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